Abstract

The intensity characteristics of electron microscope images are briefly discussed with examples of Fresnel diffraction fringes and edge luminosity to illustrate the intensity contours at sharp edges. The preparation and properties of silica replicas of surfaces are reviewed and some examples of the application to metallography and grinding and polishing are exhibited. The use of stereoscopy in determining elevations is demonstrated and profiles of diffraction gratings are shown as examples.

© 1945 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cf. A. F. Prebus, Colloid Chemistry (edited by Alexander) (Reinhold Publishing Corporation, New York, 1944), Vol. 5, p. 152.
  2. H. Busch, Ann. d. Physik 81, 974 (1926).
    [Crossref]
  3. H. Boersch, Physik. Zeits. 44, 202 (1943).
  4. E. Ruska, Kolloid Zeits. 105, 43 (1943).
    [Crossref]
  5. J. Hillier, Can. J. Research A17, 64 (1939).
    [Crossref]
  6. B. v Borries and E. Ruska, Naturwiss. 27, 281 (1939).
    [Crossref]
  7. J. Hillier, Phys. Rev. 60, 743 (1941).
    [Crossref]
  8. L. I. Schiff, Phys. Rev. 61, 391 (1942).
  9. L. Marton and L. I. Schiff, J. App. Phys. 12, 759 (1941).
    [Crossref]
  10. H. Mahl, Zeits. f. tech. Physik 21, 17 (1940).
  11. V. K. Zworykin and E. G. Ramberg, J. App. Phys. 12, 642 (1941).
    [Crossref]
  12. V. J. Schafer and D. Harker, J. App. Phys. 13, 427 (1942).
    [Crossref]
  13. R. D. Heidenreich and V. G. Peck, J. App. Phys. 14, 23 (1943).
    [Crossref]
  14. R. D. Heidenreich, J. App. Phys. 14, 312 (1943).
    [Crossref]
  15. R. D. Heidenreich and L. A. Matheson, J. App. Phys. 15, 423 (1944).
    [Crossref]
  16. H. D. Babcock, J. Opt. Soc. Am. 34, 1 (1944).
    [Crossref]

1944 (2)

R. D. Heidenreich and L. A. Matheson, J. App. Phys. 15, 423 (1944).
[Crossref]

H. D. Babcock, J. Opt. Soc. Am. 34, 1 (1944).
[Crossref]

1943 (4)

R. D. Heidenreich and V. G. Peck, J. App. Phys. 14, 23 (1943).
[Crossref]

R. D. Heidenreich, J. App. Phys. 14, 312 (1943).
[Crossref]

H. Boersch, Physik. Zeits. 44, 202 (1943).

E. Ruska, Kolloid Zeits. 105, 43 (1943).
[Crossref]

1942 (2)

L. I. Schiff, Phys. Rev. 61, 391 (1942).

V. J. Schafer and D. Harker, J. App. Phys. 13, 427 (1942).
[Crossref]

1941 (3)

V. K. Zworykin and E. G. Ramberg, J. App. Phys. 12, 642 (1941).
[Crossref]

L. Marton and L. I. Schiff, J. App. Phys. 12, 759 (1941).
[Crossref]

J. Hillier, Phys. Rev. 60, 743 (1941).
[Crossref]

1940 (1)

H. Mahl, Zeits. f. tech. Physik 21, 17 (1940).

1939 (2)

J. Hillier, Can. J. Research A17, 64 (1939).
[Crossref]

B. v Borries and E. Ruska, Naturwiss. 27, 281 (1939).
[Crossref]

1926 (1)

H. Busch, Ann. d. Physik 81, 974 (1926).
[Crossref]

Babcock, H. D.

Boersch, H.

H. Boersch, Physik. Zeits. 44, 202 (1943).

Busch, H.

H. Busch, Ann. d. Physik 81, 974 (1926).
[Crossref]

Harker, D.

V. J. Schafer and D. Harker, J. App. Phys. 13, 427 (1942).
[Crossref]

Heidenreich, R. D.

R. D. Heidenreich and L. A. Matheson, J. App. Phys. 15, 423 (1944).
[Crossref]

R. D. Heidenreich, J. App. Phys. 14, 312 (1943).
[Crossref]

R. D. Heidenreich and V. G. Peck, J. App. Phys. 14, 23 (1943).
[Crossref]

Hillier, J.

J. Hillier, Phys. Rev. 60, 743 (1941).
[Crossref]

J. Hillier, Can. J. Research A17, 64 (1939).
[Crossref]

Mahl, H.

H. Mahl, Zeits. f. tech. Physik 21, 17 (1940).

Marton, L.

L. Marton and L. I. Schiff, J. App. Phys. 12, 759 (1941).
[Crossref]

Matheson, L. A.

R. D. Heidenreich and L. A. Matheson, J. App. Phys. 15, 423 (1944).
[Crossref]

Peck, V. G.

R. D. Heidenreich and V. G. Peck, J. App. Phys. 14, 23 (1943).
[Crossref]

Prebus, A. F.

Cf. A. F. Prebus, Colloid Chemistry (edited by Alexander) (Reinhold Publishing Corporation, New York, 1944), Vol. 5, p. 152.

Ramberg, E. G.

V. K. Zworykin and E. G. Ramberg, J. App. Phys. 12, 642 (1941).
[Crossref]

Ruska, E.

E. Ruska, Kolloid Zeits. 105, 43 (1943).
[Crossref]

B. v Borries and E. Ruska, Naturwiss. 27, 281 (1939).
[Crossref]

Schafer, V. J.

V. J. Schafer and D. Harker, J. App. Phys. 13, 427 (1942).
[Crossref]

Schiff, L. I.

L. I. Schiff, Phys. Rev. 61, 391 (1942).

L. Marton and L. I. Schiff, J. App. Phys. 12, 759 (1941).
[Crossref]

v Borries, B.

B. v Borries and E. Ruska, Naturwiss. 27, 281 (1939).
[Crossref]

Zworykin, V. K.

V. K. Zworykin and E. G. Ramberg, J. App. Phys. 12, 642 (1941).
[Crossref]

Ann. d. Physik (1)

H. Busch, Ann. d. Physik 81, 974 (1926).
[Crossref]

Can. J. Research (1)

J. Hillier, Can. J. Research A17, 64 (1939).
[Crossref]

J. App. Phys. (6)

V. K. Zworykin and E. G. Ramberg, J. App. Phys. 12, 642 (1941).
[Crossref]

V. J. Schafer and D. Harker, J. App. Phys. 13, 427 (1942).
[Crossref]

R. D. Heidenreich and V. G. Peck, J. App. Phys. 14, 23 (1943).
[Crossref]

R. D. Heidenreich, J. App. Phys. 14, 312 (1943).
[Crossref]

R. D. Heidenreich and L. A. Matheson, J. App. Phys. 15, 423 (1944).
[Crossref]

L. Marton and L. I. Schiff, J. App. Phys. 12, 759 (1941).
[Crossref]

J. Opt. Soc. Am. (1)

Kolloid Zeits. (1)

E. Ruska, Kolloid Zeits. 105, 43 (1943).
[Crossref]

Naturwiss. (1)

B. v Borries and E. Ruska, Naturwiss. 27, 281 (1939).
[Crossref]

Phys. Rev. (2)

J. Hillier, Phys. Rev. 60, 743 (1941).
[Crossref]

L. I. Schiff, Phys. Rev. 61, 391 (1942).

Physik. Zeits. (1)

H. Boersch, Physik. Zeits. 44, 202 (1943).

Zeits. f. tech. Physik (1)

H. Mahl, Zeits. f. tech. Physik 21, 17 (1940).

Other (1)

Cf. A. F. Prebus, Colloid Chemistry (edited by Alexander) (Reinhold Publishing Corporation, New York, 1944), Vol. 5, p. 152.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Fresnel diffraction at the edge of a crystal of molybdenum oxide smoke demonstrating the wave properties of electrons. Illuminating aperture of about 2×10−5 radian employed. The numbers are the spacings of the maxima in angstrom units.

Fig. 2
Fig. 2

Sequence of micrographs taken at focus and beyond showing edge luminosity phenomena. Illuminating aperture of about 10−3 radian employed. The arrows indicate the bright spots formed at intersection of fringes.

Fig. 3
Fig. 3

Electron micrographs of recrystallized gold film exhibiting particles with an average diameter of 80A.

Fig. 4
Fig. 4

Comparison of a photomicrograph of a polished and etched stainless steel with an electron micrograph of a silica replica of the identical spot. (a) Photomicrograph. (b) Electron micrograph of silica replica.

Fig. 5
Fig. 5

Comparison of images of a diffraction grating (600 lines/mm) ruled on speculum. (a) Photomicrograph. (b) Electron micrograph of Formvar replica. (c) Electron micrograph of silica replica.

Fig. 6
Fig. 6

Enlargement of the silica replica of Fig. 5 showing the fine scratches and damage incurred during ruling.

Fig. 7
Fig. 7

Silica replica of a gold film evaporated onto rocksalt illustrating the ability of the replica to reproduce fine detail.

Fig. 8
Fig. 8

Recrystallized gold on rocksalt. (a) Micrograph of the actual gold particles. (b) Silica replica of similar specimen.

Fig. 9
Fig. 9

Precipitation in a polished and etched 24-ST aluminum alloy. 4500×.

Fig. 10
Fig. 10

Martensite in quenched steel.

Fig. 11
Fig. 11

Sequence illustrating the grinding and polishing of a rocksalt cleavage face. 4000×. (a) Fresh cleavage. (b) Fresh cleavage ground on 4/0 paper. (c) Surface from (b) after polishing on felt. (d) Surface from (c) after lightly etching in ethyl alcohol.

Fig. 12
Fig. 12

Surface of a freshly aluminized mirror.

Fig. 13
Fig. 13

Electron stereo micrographs of molybdenum oxide smoke crystals on a silica substrate. Total stereo angle of about 4°. 5700×.

Fig. 14
Fig. 14

Electron stereo micrograph of an etch pit in pure zinc. 8000×.

Fig. 15
Fig. 15

Stereo micrograph of the diffraction grating of Fig. 5.

Fig. 16
Fig. 16

Profile of grating (Fig. 15) determined stereoscopically by parallax measurements.

Fig. 17
Fig. 17

Stereo micrograph of different diffraction grating for comparison with Figs. 15 and 16.

Fig. 18
Fig. 18

Profile of grating (Fig. 17) determined stereoscopically by parallax measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x = [ l λ ( n - 1 4 ) ] 1 2 , n = 3 , 5 , 7 ,