Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Fermi, Zeits. f. Physik 7, 250 (1931).
    [Crossref]
  2. D. M. Dennison, Phys. Rev. 41, 304 (1932).
    [Crossref]
  3. B. T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940).
    [Crossref]
  4. H. H. Nielsen, J. Chem. Phys. 5, 818 (1937).
    [Crossref]
  5. E. S. Ebers and H. H. Nielsen, J. Chem. Phys. 5, 822 (1937).
    [Crossref]
  6. Harold W. Thompson (private communication).
  7. W. W. Coblentz, Investigations of Infrared Spectra (Carnegie Institution of Washington, 1905), Part I, p. 166.
  8. W. H. Shaffer (private communication).

1940 (1)

B. T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940).
[Crossref]

1937 (2)

H. H. Nielsen, J. Chem. Phys. 5, 818 (1937).
[Crossref]

E. S. Ebers and H. H. Nielsen, J. Chem. Phys. 5, 822 (1937).
[Crossref]

1932 (1)

D. M. Dennison, Phys. Rev. 41, 304 (1932).
[Crossref]

1931 (1)

E. Fermi, Zeits. f. Physik 7, 250 (1931).
[Crossref]

Coblentz, W. W.

W. W. Coblentz, Investigations of Infrared Spectra (Carnegie Institution of Washington, 1905), Part I, p. 166.

Darling, B. T.

B. T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940).
[Crossref]

Dennison, D. M.

B. T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940).
[Crossref]

D. M. Dennison, Phys. Rev. 41, 304 (1932).
[Crossref]

Ebers, E. S.

E. S. Ebers and H. H. Nielsen, J. Chem. Phys. 5, 822 (1937).
[Crossref]

Fermi, E.

E. Fermi, Zeits. f. Physik 7, 250 (1931).
[Crossref]

Nielsen, H. H.

H. H. Nielsen, J. Chem. Phys. 5, 818 (1937).
[Crossref]

E. S. Ebers and H. H. Nielsen, J. Chem. Phys. 5, 822 (1937).
[Crossref]

Shaffer, W. H.

W. H. Shaffer (private communication).

Thompson, Harold W.

Harold W. Thompson (private communication).

J. Chem. Phys. (2)

H. H. Nielsen, J. Chem. Phys. 5, 818 (1937).
[Crossref]

E. S. Ebers and H. H. Nielsen, J. Chem. Phys. 5, 822 (1937).
[Crossref]

Phys. Rev. (2)

D. M. Dennison, Phys. Rev. 41, 304 (1932).
[Crossref]

B. T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940).
[Crossref]

Zeits. f. Physik (1)

E. Fermi, Zeits. f. Physik 7, 250 (1931).
[Crossref]

Other (3)

Harold W. Thompson (private communication).

W. W. Coblentz, Investigations of Infrared Spectra (Carnegie Institution of Washington, 1905), Part I, p. 166.

W. H. Shaffer (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Infra-red absorption spectrum of formaldehyde vapor near 3.3μ showing the resonating parallel vibrations (ω1:2ω3) and (2ω3:ω1).

Fig. 2
Fig. 2

The perpendicular absorption bands (ω5:ω6) and (ω6:ω5) showing the effect of Coriolis interaction.

Fig. 3
Fig. 3

Two perpendicular absorption bands in the spectrum of allene, measured by Dr. Harold W. Thompson of Oxford University, Oxford, England, showing the effect of Coriolis interaction.

Fig. 4
Fig. 4

The Spectrum of CH4 in the infra-red showing an absorption maximum near 1500 cm−1 interpreted to be the forbidden transition ω2.

Fig. 5
Fig. 5

Absorption bands in the spectrum of GeH4 near 12μ. The more intense band is ω4 and the other is the forbidden transition ω2.

Tables (1)

Tables Icon

Table II Positions of Q branches, in wave-number units.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

( v , J , K H v , J , K ) = ( E v / h c ) + 1 2 ( X v + Y v ) [ J ( J + 1 ) - K 2 ] + Z v K 2 + 2 Z e r ζ r l r K - D J J 2 ( J + 1 ) 2 - D J K J ( J + 1 ) K 2 - D K K 4 ,
( v , J , K H v , J , K ± 2 ) = 1 2 ( X v - Y v ) { [ J ( J + 1 ) - K ( K ± 1 ) ] × [ J ( J + 1 ) - ( K + 1 ) ( K + 2 ) ] } 1 2 ,
( E v / h c ) = s ω s ( v s + g s / 2 ) + s s x s s ( v s + g s / 2 ) ( v s + g s / 2 ) + r r x l r l r , l r l r .
( v s , v s H / h c v s + 2 , v s - 1 ) = ( k s s s / 2 ) { ( v s + 1 ) ( v s + 2 ) ( v s / 2 ) } 1 2 ,
( v r , l r , v s H / h c v r + 2 , l r , v s - 1 ) = ( - k r r s / 2 ) { [ ( v r + 2 ) - l r 2 ] [ v s / 2 ] } 1 2 .
W = 1 2 [ E 2 , 0 + E 0 , 1 ] ± 1 2 { [ E 2 , 0 - E 0 , 1 ] 2 + k s s s 2 } 1 2 .
( v s v s k s s s q s 2 q s v s v s ) ( v s v s k s s s q s 2 q s v s v s ) .
( v s v s k s s s q s 2 q s v s + 2 , ( v s - 1 ) × ( v s + 2 , v s - 1 k s s s q s 2 q s v s + 2 , v s - 2 )
( v 1 , v 2 , v 3 v 1 - 2 , v 2 , v 3 + 2 ) = ( 1 2 ) [ v 1 ( v 1 - 1 ) ( v 3 + 1 ) ( v 3 + 2 ) 1 2 ] × [ ( k 1133 / 4 ) - ( 2 π c k 133 2 / ω 3 ) + ( π c k 111 k 133 / ω 1 ) + ( π c k 233 k 111 / ω 2 ) ( ω 2 2 / ( 4 ω 3 2 - ω 2 2 ) ) .
ζ s s [ ( ω s / ω s ) 1 2 q s p s - ( ω s / ω s ) 1 2 q s p s ] P α ,
( v s , v s , K v s + 1 , v s - 1 , K ) = i ζ s s Z e K [ ( ω s / ω s ) 1 2 + ( ω s / ω s ) 1 2 ] .
W ( ± ) = E ( ± ) / h c = ( 1 / 2 h c ) { [ E 1 , 0 + E 0 , 1 ] ± ( [ E 1 , 0 - E 0 , 1 ] 2 + 4 ζ s s 2 K 2 Z e 2 × [ ( ω s ω s ) 1 2 + ( ω s ω s ) 1 2 ] 2 ) } 1 2 + s ( ω s / 2 ) .
( E ( 0 ) / h c ) = s ( ω s / 2 ) + [ J ( J + 1 ) - K 2 ] X e + K 2 Z e .
ν = ( ω s + ω s ) / 2 - ( Z e - X e ) ± 1 2 { ( ω s - ω s ) 2 + 4 ( K ζ s s Z e [ ( ω s / ω s ) 1 2 + ( ω s / ω s ) 1 2 ] ) 2 } 1 2 ± 2 K ( Z e - X e ) ,
Δ ν ( ± ) = 2 { ( 1 ± ( ζ s s / 2 ) [ ( ω s / ω s ) 1 2 + ( ω s / ω s ) 1 2 ] ) Z e - X e } .