Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. G. Pitt, “Characteristics of dichromatic vision,” Medical Research Council, (1935).
  2. D. B. Judd, J. Opt. Soc. Am. 33, 305 (1943).
    [Crossref]
  3. S. Hecht and S. Shlaer, J. Gen. Physiol. 20, 57–93 (1937).
    [Crossref]
  4. D. B. Judd, reference 2, pp. 303–304.
  5. F. H. G. Pitt, reference 1, p. 45.
  6. F. H. G. Pitt, reference 1, pp. 45–50.
  7. D. B. Judd, reference 2, p. 305.
  8. F. H. G. Pitt, reference 1, pp. 9–17.
  9. F. H. G. Pitt, reference 1, pp. 25–31.
  10. S. Hecht and S. Shlaer, reference 3, pp. 60–65.
  11. D. L. MacAdam, J. Opt. Soc. Am. 32, 247–274 (1942).
    [Crossref]
  12. F. H. G. Pitt, reference 1, pp. 25–31.

1943 (1)

D. B. Judd, J. Opt. Soc. Am. 33, 305 (1943).
[Crossref]

1942 (1)

1937 (1)

S. Hecht and S. Shlaer, J. Gen. Physiol. 20, 57–93 (1937).
[Crossref]

Hecht, S.

S. Hecht and S. Shlaer, J. Gen. Physiol. 20, 57–93 (1937).
[Crossref]

S. Hecht and S. Shlaer, reference 3, pp. 60–65.

Judd, D. B.

D. B. Judd, J. Opt. Soc. Am. 33, 305 (1943).
[Crossref]

D. B. Judd, reference 2, pp. 303–304.

D. B. Judd, reference 2, p. 305.

MacAdam, D. L.

Pitt, F. H. G.

F. H. G. Pitt, reference 1, pp. 25–31.

F. H. G. Pitt, reference 1, pp. 9–17.

F. H. G. Pitt, reference 1, pp. 25–31.

F. H. G. Pitt, reference 1, p. 45.

F. H. G. Pitt, reference 1, pp. 45–50.

F. H. G. Pitt, “Characteristics of dichromatic vision,” Medical Research Council, (1935).

Shlaer, S.

S. Hecht and S. Shlaer, J. Gen. Physiol. 20, 57–93 (1937).
[Crossref]

S. Hecht and S. Shlaer, reference 3, pp. 60–65.

J. Gen. Physiol. (1)

S. Hecht and S. Shlaer, J. Gen. Physiol. 20, 57–93 (1937).
[Crossref]

J. Opt. Soc. Am. (2)

Other (9)

F. H. G. Pitt, reference 1, pp. 25–31.

F. H. G. Pitt, “Characteristics of dichromatic vision,” Medical Research Council, (1935).

D. B. Judd, reference 2, pp. 303–304.

F. H. G. Pitt, reference 1, p. 45.

F. H. G. Pitt, reference 1, pp. 45–50.

D. B. Judd, reference 2, p. 305.

F. H. G. Pitt, reference 1, pp. 9–17.

F. H. G. Pitt, reference 1, pp. 25–31.

S. Hecht and S. Shlaer, reference 3, pp. 60–65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Color mixture data for two dichromats obtained by Hecht and Shlaer. The two primaries are 458.7 and 570.0 mμ and their intensities are expressed in energy units.

Fig. 2
Fig. 2

Color mixture and visibility data for H.J. and A.W.G. The visibility data for the I.C.I. observer (dotted curve) are included for comparison.

Fig. 3
Fig. 3

Curves used in computing the neutral point for H.J. Curve E represents the energy distribution for the white stimulus (5000°K) and curves L and B represent the corresponding brightness distribution and blue component curves for H.J.

Fig. 4
Fig. 4

Mixtures of complementaries which appear alike to the standard I.C.I. observer but quite unlike to the protanope A.W.G.

Fig. 5
Fig. 5

Pitt’s color mixture data.

Fig. 6
Fig. 6

Chroma discrimination data for the deuteranope A.W.G. The intensities of the two primaries are expressed in energy units.

Fig. 7
Fig. 7

Chroma discrimination data for the protanope H.J. The intensities for the two primaries were originally expressed in energy units, but the P values have been weighted by multiplying the intensity for the yellow primary by 4.4.

Fig. 8
Fig. 8

Wave-length discrimination data for A.W.G. and H.J.

Tables (1)

Tables Icon

Table I Data used in computing the spectral match for white (5000°K).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

P = 100 1 + 10 K ( λ - C ) .
10 K ( λ - C E ) = 100 - P P = E Y E B .
P = 100 1 + V Y V B 10 K ( λ - C E ) = 100 1 + 10 K [ λ - C E + ( log V Y / V B ) / K ] .
[ C E - log ( V Y / V B ) K ]
C = 494 - log 10 ( brightness ratio required to match 494 ) 0.0425 .
C E = 500 - 1 K ( log 10 E Y E B ) .
Δ P = 100 N ϕ [ 1 + P ( ϕ - 1 ) 100 ] 2 .
S = 0 P N ϕ 100 [ 1 1 + P ( ϕ - 1 100 ) ] 2 d P = N 1 + ( 100 - P P ) ( 1 ϕ ) .
S = N .
100 - P P = intensity of the red primary intensity of the blue primary .
S = N 1 + ( 100 - P ) ϕ P ( 1 ϕ ) = N P 100 ,
Δ P = 100 N .
Weighted P value = 1 1 + 100 - P P ϕ .
ϕ = 10 K ( H - C ) ,
100 - P P = 10 K ( λ - C )
S = N 1 + 10 K ( λ - H ) .
Δ λ = log 10 e K N [ 10 K ( λ - H ) + 10 K ( H - λ ) + 2 ] .
Δ λ = 4 log 10 e K N ,
P = 100 1 + 10 K ( λ - C ) .