Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Nickerson, Trans. Illum. Eng. Soc. 36, 373 (1941).
  2. C. G. Abbot, F. E. Fowle, and L. B. Aldrich, Smithsonian Misc. Coll. 74, No. 7, 15 (1923).
  3. H. H. Kimball, Proceedings International Congress on Illumination (Chemical Publishing Company, Easton, Pennsylvania, 1928), p. 501.
  4. H. P. Gage, Trans. Illum. Eng. Soc. 34, 316 (1939).
  5. K. S. Gibson, J. Opt. Soc. Am. 30, 88 (1940).
  6. P. Moon, J. Frank. Inst. 230, 583 (1940).
  7. Illuminating Engineering Society, Committee on Natural Lighting, Illum. Eng. 36, 931 (1941).
  8. A. H. Taylor and G. P. Kerr, J. Opt. Soc. Am. 31, 3 (1941).
  9. D. Nickerson, J. Opt. Soc. Am. 29, 1 (1939).
  10. D. Nickerson, Trans. Illum. Eng. Soc. 34, 1233 (1939).
  11. D. Nickerson, “Computational tables for use in studies of artificial daylighting” (U. S. Dept. of Agriculture, Agricultural Marketing Service, 1940).
  12. K. L. Kelly, K. S. Gibson, and D. Nickerson, J. Opt. Soc. Am. 33, 355 (1943).
  13. D. B. Judd, Bur. Stand. J. Research 6, 465 (1931).
  14. F. T. Bowditch and M. R. Null, J. Opt. Soc. Am. 28, 500 (1938).
  15. H. W. Swank and M. G. Mellon, J. Opt. Soc. Am. 27, 414 (1937).
  16. F. W. Sears, J. Opt. Soc. Am. 29, 77 (1939).
  17. D. B. Judd, J. Opt. Soc. Am. 21, 729 (1931).
  18. Proceedings of the International Commission on Illumination. Tenth Session, Condensed, Unofficial Version (edited and published by the United States National Committee, 1943), p. 76.
  19. D. L. MacAdam, J. Opt. Soc. Am. 28, 103 (1938).
  20. D. L. MacAdam, J. Opt. Soc. Am. 25, 249 (1935).
  21. D. B. Judd, J. Opt. Soc. Am. 25, 24 (1935).
  22. F. C. Breckenridge and W. R. Schaub, J. Opt. Soc. Am. 27, 226 (1937); J. Opt. Soc. Am. 29, 370 (1939).
  23. T. Smith, Discussion on Vision (Physical Society, London, 1932), p. 212.
  24. R. H. Sinden, J. Opt. Soc. Am. 27, 124 (1937); J. Opt. Soc. Am. 28, 339 (1938).
  25. D. B. Judd, J. Opt. Soc. Am. 28, 52 (1938).
  26. D. B. Judd, Textile Research 9, 253, 292 (1939).
  27. Francis Scofield, , 11 (1940).
  28. E. G. Adams, J. Opt. Soc. Am. 30, 657 (1940).
  29. D. Nickerson, J. Opt. Soc. Am. 31, 758 (1941).
  30. F. Scofield, D. B. Judd, and R. S. Hunter, , 19 (May, 1941).
  31. D. L. MacAdam, J. Opt. Soc. Am. 27, 294 (1937).
  32. J. G. Holmes, Proc. Phys. Soc. 52, 359 (1940).
  33. W. D. Wright, Nature 146, 155 (1940).
  34. D. B. Judd, J. Opt. Soc. Am. 26, 421 (1936).
  35. I. G. Priest, J. Opt. Soc. Am. 23, 41 (1933).
  36. D. B. Judd, J. Opt. Soc. Am. 23, 7 (1933).
  37. H. P. Gage, J. Opt. Soc. Am. 23, 46 (1933).
  38. R. S. Estey, J. Opt. Soc. Am. 28, 293 (1938).
  39. I. Langmuir and J. A. Orange, Trans. Am. Inst. Elec. Eng. 32, 1935 (1913).
  40. D. L. MacAdam, J. Opt. Soc. Am. 25, 361 (1935).
  41. S. Hecht and R. E. Williams, J. Gen. Physiol. 5, 1 (1922–1923).
  42. H. Christensen, Beitrage zum Verstandnis der Leistungsfahigkeit des medizinischen Durchleuchtungsverfahrens (Kopenhagen, Verlage Ejnar Munksgaard, 1939).
  43. L. L. Sloan, Psychol. Monographs 38, No. 1 (1928).
  44. H. Laurens, Am. J. Physiol. 67, 348 (1924).
  45. A. Dresler, Das Licht 10, 118, 145 (1940).
  46. S. Hecht, J. Gen. Physiol. 18, 767 (1935);Proc. Nat. Acad. Sci. 20, 644 (1934).
  47. J. Blanchard, Phys. Rev. 11, 81 (1918).
  48. E. M. Lowry, J. Opt. Soc. Am. 21, 132 (1931).
  49. W. S. Stiles, Proc. Roy. Soc. B104, 322 (1929).
  50. L. L. Holladay, J. Opt. Soc. Am. 14, 1 (1927).
  51. E. M. Lowry, J. Opt. Soc. Am. 18, 29 (1929).
  52. W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. 46, 459 (1934).
  53. A. Konig and C. Dieterici, Wied. Ann. d. Physik u. Chemie 22, 579 (1884); Graefes Archiv. [2] 30, 158 (1884).
  54. O. Steindler, Sitz. Ber. Akad. Wiss. Wein, Math.-Naturw. Kl. 115, 39 (1906).
  55. L. A. Jones, J. Opt. Soc. Am. 1, 63 (1917).
  56. H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547 (1923).
  57. E. P. T. Tyndall, J. Opt. Soc. Am. 23, 15 (1933).
  58. W. D. Wright, J. Opt. Soc. Am. 33, 632 (1943).
  59. L. A. Jones and E. M. Lowry, J. Opt. Soc. Am. 13, 25 (1926).
  60. L. C. Marton, F. L. Warburton, and W. J. Morgan, Med. Research Council, (London, 1933).

1943 (2)

1941 (4)

A. H. Taylor and G. P. Kerr, J. Opt. Soc. Am. 31, 3 (1941).

D. Nickerson, Trans. Illum. Eng. Soc. 36, 373 (1941).

Illuminating Engineering Society, Committee on Natural Lighting, Illum. Eng. 36, 931 (1941).

D. Nickerson, J. Opt. Soc. Am. 31, 758 (1941).

1940 (6)

J. G. Holmes, Proc. Phys. Soc. 52, 359 (1940).

W. D. Wright, Nature 146, 155 (1940).

K. S. Gibson, J. Opt. Soc. Am. 30, 88 (1940).

P. Moon, J. Frank. Inst. 230, 583 (1940).

A. Dresler, Das Licht 10, 118, 145 (1940).

E. G. Adams, J. Opt. Soc. Am. 30, 657 (1940).

1939 (5)

D. Nickerson, Trans. Illum. Eng. Soc. 34, 1233 (1939).

H. P. Gage, Trans. Illum. Eng. Soc. 34, 316 (1939).

D. B. Judd, Textile Research 9, 253, 292 (1939).

D. Nickerson, J. Opt. Soc. Am. 29, 1 (1939).

F. W. Sears, J. Opt. Soc. Am. 29, 77 (1939).

1938 (4)

1937 (4)

1936 (1)

1935 (4)

1934 (1)

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. 46, 459 (1934).

1933 (4)

1931 (3)

1929 (2)

W. S. Stiles, Proc. Roy. Soc. B104, 322 (1929).

E. M. Lowry, J. Opt. Soc. Am. 18, 29 (1929).

1928 (1)

L. L. Sloan, Psychol. Monographs 38, No. 1 (1928).

1927 (1)

1926 (1)

1924 (1)

H. Laurens, Am. J. Physiol. 67, 348 (1924).

1923 (2)

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, Smithsonian Misc. Coll. 74, No. 7, 15 (1923).

H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547 (1923).

1918 (1)

J. Blanchard, Phys. Rev. 11, 81 (1918).

1917 (1)

1913 (1)

I. Langmuir and J. A. Orange, Trans. Am. Inst. Elec. Eng. 32, 1935 (1913).

1906 (1)

O. Steindler, Sitz. Ber. Akad. Wiss. Wein, Math.-Naturw. Kl. 115, 39 (1906).

1884 (1)

A. Konig and C. Dieterici, Wied. Ann. d. Physik u. Chemie 22, 579 (1884); Graefes Archiv. [2] 30, 158 (1884).

Abbot, C. G.

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, Smithsonian Misc. Coll. 74, No. 7, 15 (1923).

Adams, E. G.

E. G. Adams, J. Opt. Soc. Am. 30, 657 (1940).

Aldrich, L. B.

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, Smithsonian Misc. Coll. 74, No. 7, 15 (1923).

Blanchard, J.

J. Blanchard, Phys. Rev. 11, 81 (1918).

Bowditch, F. T.

Breckenridge, F. C.

F. C. Breckenridge and W. R. Schaub, J. Opt. Soc. Am. 27, 226 (1937); J. Opt. Soc. Am. 29, 370 (1939).

Christensen, H.

H. Christensen, Beitrage zum Verstandnis der Leistungsfahigkeit des medizinischen Durchleuchtungsverfahrens (Kopenhagen, Verlage Ejnar Munksgaard, 1939).

Dieterici, C.

A. Konig and C. Dieterici, Wied. Ann. d. Physik u. Chemie 22, 579 (1884); Graefes Archiv. [2] 30, 158 (1884).

Dresler, A.

A. Dresler, Das Licht 10, 118, 145 (1940).

Estey, R. S.

Fowle, F. E.

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, Smithsonian Misc. Coll. 74, No. 7, 15 (1923).

Gage, H. P.

H. P. Gage, Trans. Illum. Eng. Soc. 34, 316 (1939).

H. P. Gage, J. Opt. Soc. Am. 23, 46 (1933).

Gibson, K. S.

Hamilton, W. F.

H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547 (1923).

Hecht, S.

S. Hecht, J. Gen. Physiol. 18, 767 (1935);Proc. Nat. Acad. Sci. 20, 644 (1934).

S. Hecht and R. E. Williams, J. Gen. Physiol. 5, 1 (1922–1923).

Holladay, L. L.

Holmes, J. G.

J. G. Holmes, Proc. Phys. Soc. 52, 359 (1940).

Hunter, R. S.

F. Scofield, D. B. Judd, and R. S. Hunter, , 19 (May, 1941).

Jones, L. A.

Judd, D. B.

D. B. Judd, Textile Research 9, 253, 292 (1939).

D. B. Judd, J. Opt. Soc. Am. 28, 52 (1938).

D. B. Judd, J. Opt. Soc. Am. 26, 421 (1936).

D. B. Judd, J. Opt. Soc. Am. 25, 24 (1935).

D. B. Judd, J. Opt. Soc. Am. 23, 7 (1933).

D. B. Judd, Bur. Stand. J. Research 6, 465 (1931).

D. B. Judd, J. Opt. Soc. Am. 21, 729 (1931).

F. Scofield, D. B. Judd, and R. S. Hunter, , 19 (May, 1941).

Kelly, K. L.

Kerr, G. P.

Kimball, H. H.

H. H. Kimball, Proceedings International Congress on Illumination (Chemical Publishing Company, Easton, Pennsylvania, 1928), p. 501.

Konig, A.

A. Konig and C. Dieterici, Wied. Ann. d. Physik u. Chemie 22, 579 (1884); Graefes Archiv. [2] 30, 158 (1884).

Langmuir, I.

I. Langmuir and J. A. Orange, Trans. Am. Inst. Elec. Eng. 32, 1935 (1913).

Laurens, H.

H. Laurens, Am. J. Physiol. 67, 348 (1924).

H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547 (1923).

Lowry, E. M.

MacAdam, D. L.

Marton, L. C.

L. C. Marton, F. L. Warburton, and W. J. Morgan, Med. Research Council, (London, 1933).

Mellon, M. G.

Moon, P.

P. Moon, J. Frank. Inst. 230, 583 (1940).

Morgan, W. J.

L. C. Marton, F. L. Warburton, and W. J. Morgan, Med. Research Council, (London, 1933).

Nickerson, D.

K. L. Kelly, K. S. Gibson, and D. Nickerson, J. Opt. Soc. Am. 33, 355 (1943).

D. Nickerson, Trans. Illum. Eng. Soc. 36, 373 (1941).

D. Nickerson, J. Opt. Soc. Am. 31, 758 (1941).

D. Nickerson, J. Opt. Soc. Am. 29, 1 (1939).

D. Nickerson, Trans. Illum. Eng. Soc. 34, 1233 (1939).

D. Nickerson, “Computational tables for use in studies of artificial daylighting” (U. S. Dept. of Agriculture, Agricultural Marketing Service, 1940).

Null, M. R.

Orange, J. A.

I. Langmuir and J. A. Orange, Trans. Am. Inst. Elec. Eng. 32, 1935 (1913).

Pitt, F. H. G.

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. 46, 459 (1934).

Priest, I. G.

Schaub, W. R.

F. C. Breckenridge and W. R. Schaub, J. Opt. Soc. Am. 27, 226 (1937); J. Opt. Soc. Am. 29, 370 (1939).

Scofield, F.

F. Scofield, D. B. Judd, and R. S. Hunter, , 19 (May, 1941).

Scofield, Francis

Francis Scofield, , 11 (1940).

Sears, F. W.

Sinden, R. H.

Sloan, L. L.

L. L. Sloan, Psychol. Monographs 38, No. 1 (1928).

Smith, T.

T. Smith, Discussion on Vision (Physical Society, London, 1932), p. 212.

Steindler, O.

O. Steindler, Sitz. Ber. Akad. Wiss. Wein, Math.-Naturw. Kl. 115, 39 (1906).

Stiles, W. S.

W. S. Stiles, Proc. Roy. Soc. B104, 322 (1929).

Swank, H. W.

Taylor, A. H.

Tyndall, E. P. T.

Warburton, F. L.

L. C. Marton, F. L. Warburton, and W. J. Morgan, Med. Research Council, (London, 1933).

Williams, R. E.

S. Hecht and R. E. Williams, J. Gen. Physiol. 5, 1 (1922–1923).

Wright, W. D.

W. D. Wright, J. Opt. Soc. Am. 33, 632 (1943).

W. D. Wright, Nature 146, 155 (1940).

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. 46, 459 (1934).

Am. J. Physiol. (2)

H. Laurens, Am. J. Physiol. 67, 348 (1924).

H. Laurens and W. F. Hamilton, Am. J. Physiol. 65, 547 (1923).

Bur. Stand. J. Research (1)

D. B. Judd, Bur. Stand. J. Research 6, 465 (1931).

Das Licht (1)

A. Dresler, Das Licht 10, 118, 145 (1940).

Illum. Eng. (1)

Illuminating Engineering Society, Committee on Natural Lighting, Illum. Eng. 36, 931 (1941).

J. Frank. Inst. (1)

P. Moon, J. Frank. Inst. 230, 583 (1940).

J. Gen. Physiol. (2)

S. Hecht, J. Gen. Physiol. 18, 767 (1935);Proc. Nat. Acad. Sci. 20, 644 (1934).

S. Hecht and R. E. Williams, J. Gen. Physiol. 5, 1 (1922–1923).

J. Opt. Soc. Am. (30)

D. L. MacAdam, J. Opt. Soc. Am. 25, 361 (1935).

L. L. Holladay, J. Opt. Soc. Am. 14, 1 (1927).

E. M. Lowry, J. Opt. Soc. Am. 18, 29 (1929).

E. M. Lowry, J. Opt. Soc. Am. 21, 132 (1931).

L. A. Jones, J. Opt. Soc. Am. 1, 63 (1917).

E. P. T. Tyndall, J. Opt. Soc. Am. 23, 15 (1933).

W. D. Wright, J. Opt. Soc. Am. 33, 632 (1943).

L. A. Jones and E. M. Lowry, J. Opt. Soc. Am. 13, 25 (1926).

K. S. Gibson, J. Opt. Soc. Am. 30, 88 (1940).

E. G. Adams, J. Opt. Soc. Am. 30, 657 (1940).

D. Nickerson, J. Opt. Soc. Am. 31, 758 (1941).

R. H. Sinden, J. Opt. Soc. Am. 27, 124 (1937); J. Opt. Soc. Am. 28, 339 (1938).

D. B. Judd, J. Opt. Soc. Am. 28, 52 (1938).

D. L. MacAdam, J. Opt. Soc. Am. 27, 294 (1937).

K. L. Kelly, K. S. Gibson, and D. Nickerson, J. Opt. Soc. Am. 33, 355 (1943).

D. B. Judd, J. Opt. Soc. Am. 26, 421 (1936).

I. G. Priest, J. Opt. Soc. Am. 23, 41 (1933).

D. B. Judd, J. Opt. Soc. Am. 23, 7 (1933).

H. P. Gage, J. Opt. Soc. Am. 23, 46 (1933).

R. S. Estey, J. Opt. Soc. Am. 28, 293 (1938).

A. H. Taylor and G. P. Kerr, J. Opt. Soc. Am. 31, 3 (1941).

D. Nickerson, J. Opt. Soc. Am. 29, 1 (1939).

F. T. Bowditch and M. R. Null, J. Opt. Soc. Am. 28, 500 (1938).

H. W. Swank and M. G. Mellon, J. Opt. Soc. Am. 27, 414 (1937).

F. W. Sears, J. Opt. Soc. Am. 29, 77 (1939).

D. B. Judd, J. Opt. Soc. Am. 21, 729 (1931).

D. L. MacAdam, J. Opt. Soc. Am. 28, 103 (1938).

D. L. MacAdam, J. Opt. Soc. Am. 25, 249 (1935).

D. B. Judd, J. Opt. Soc. Am. 25, 24 (1935).

F. C. Breckenridge and W. R. Schaub, J. Opt. Soc. Am. 27, 226 (1937); J. Opt. Soc. Am. 29, 370 (1939).

Nature (1)

W. D. Wright, Nature 146, 155 (1940).

Phys. Rev. (1)

J. Blanchard, Phys. Rev. 11, 81 (1918).

Proc. Phys. Soc. (2)

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. 46, 459 (1934).

J. G. Holmes, Proc. Phys. Soc. 52, 359 (1940).

Proc. Roy. Soc. (1)

W. S. Stiles, Proc. Roy. Soc. B104, 322 (1929).

Psychol. Monographs (1)

L. L. Sloan, Psychol. Monographs 38, No. 1 (1928).

Sitz. Ber. Akad. Wiss. Wein, Math.-Naturw. Kl. (1)

O. Steindler, Sitz. Ber. Akad. Wiss. Wein, Math.-Naturw. Kl. 115, 39 (1906).

Smithsonian Misc. Coll. (1)

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, Smithsonian Misc. Coll. 74, No. 7, 15 (1923).

Textile Research (1)

D. B. Judd, Textile Research 9, 253, 292 (1939).

Trans. Am. Inst. Elec. Eng. (1)

I. Langmuir and J. A. Orange, Trans. Am. Inst. Elec. Eng. 32, 1935 (1913).

Trans. Illum. Eng. Soc. (3)

D. Nickerson, Trans. Illum. Eng. Soc. 36, 373 (1941).

H. P. Gage, Trans. Illum. Eng. Soc. 34, 316 (1939).

D. Nickerson, Trans. Illum. Eng. Soc. 34, 1233 (1939).

Wied. Ann. d. Physik u. Chemie (1)

A. Konig and C. Dieterici, Wied. Ann. d. Physik u. Chemie 22, 579 (1884); Graefes Archiv. [2] 30, 158 (1884).

Other (8)

H. Christensen, Beitrage zum Verstandnis der Leistungsfahigkeit des medizinischen Durchleuchtungsverfahrens (Kopenhagen, Verlage Ejnar Munksgaard, 1939).

L. C. Marton, F. L. Warburton, and W. J. Morgan, Med. Research Council, (London, 1933).

D. Nickerson, “Computational tables for use in studies of artificial daylighting” (U. S. Dept. of Agriculture, Agricultural Marketing Service, 1940).

H. H. Kimball, Proceedings International Congress on Illumination (Chemical Publishing Company, Easton, Pennsylvania, 1928), p. 501.

T. Smith, Discussion on Vision (Physical Society, London, 1932), p. 212.

Proceedings of the International Commission on Illumination. Tenth Session, Condensed, Unofficial Version (edited and published by the United States National Committee, 1943), p. 76.

Francis Scofield, , 11 (1940).

F. Scofield, D. B. Judd, and R. S. Hunter, , 19 (May, 1941).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

Fig. 1
Fig. 1

Spectral distributions of standard illuminants for colorimetry.

Fig. 2
Fig. 2

Spectral distributions of five phases of natural daylight according to Taylor and Kerr (reference 708). S: direct sunlight. T: total illumination of horizontal plane from sun and clear sky. O: illumination of horizontal plane from entire overcast sky. N: north skylight. Z: zenith skylight.

Fig. 3
Fig. 3

Spectral distributions of Planckian radiators.

Fig. 4
Fig. 4

Spectral distributions of three sources of artificial daylight. 7500M: Macbeth lamp with color temperature 7500°K. 6800M: Macbeth lamp with color temperature 6800°K. Arc: daylight carbon arc.

Fig. 5
Fig. 5

Spectral composition of radiant emittance of Planckian radiator at temperature of freezing platinum. T=2043.8°K, c1=3.732×10−5 erg cm2 per sec., c2=1.436 cm deg. Ordinates: watts per cm2 per μ. Left-hand scale applies to upper curve, right-hand scale to lower curve.

Fig. 6
Fig. 6

Illustration of selected ordinate method of integrating X tristimulus value, corresponding to spectral reflectance indicated and Illuminant C. Supplementary ordinates are indicated by broken lines.

Fig. 7
Fig. 7

Illustration of selected ordinate method of integrating Y tristimulus value.

Fig. 8
Fig. 8

Illustration of selected ordinate method of integrating Z tristimulus value.

Fig. 9
Fig. 9

Wave-lengths for selected ordinate integrations of X for Planckian illuminants having temperatures from 2000° to 4000°K. Broken curves indicate wave-lengths of supplementary ordinates.

Fig. 10
Fig. 10

Chromaticity diagram based on 1931 I.C.I. standard observer and coordinate system for colorimetry. Chromaticities of sources indicated in Figs. 1 and 2 are shown. E: chromaticity of hypothetical source radiating equal energy per unit wave-length interval throughout the visible spectrum. S: Abbot sunlight above the atmosphere. M: Abbot mean noon sunlight.

Fig. 11
Fig. 11

Illustration of methods of determining dominant wave-length and purity, also complementary wave-length.

Fig. 12
Fig. 12

Chromaticity diagram with lines of constant dominant (and complementary) wave-lengths and curves of constant excitation purity, based on standard Illuminant C as achromatic stimulus.

Fig. 13
Fig. 13

Chromaticity diagram with lines of constant dominant (and complementary) wave-length and curves of constant excitation purity, based on standard Illuminant A as achromatic stimulus.

Fig. 14
Fig. 14

Transformation of standard chromaticity diagram, geometrically equivalent to Judd’s Uniform Chromaticity Scale diagram.

Fig. 15
Fig. 15

Chromaticity diagram showing locus of chromaticities of Planckian radiators and lines of constant correlated color temperature.

Fig. 16
Fig. 16

Enlarged section of Fig. 15 for color temperatures from 2300°K to 3600°K.

Fig. 17
Fig. 17

Luminance of the spectrum complementary necessary to “neutralize” one millilambert of each indicated spectrum color.

Fig. 18
Fig. 18

Watts of the spectrum complementary necessary to “neutralize” one watt of each indicated wave-length.

Fig. 19
Fig. 19

Lumens of neutral mixture of complementary spectrum components per watt of component having the indicated wave-length.

Fig. 20
Fig. 20

Maximum possible luminous reflectance (or transmittance) of materials producing indicated chromaticities when illuminated by standard Illuminant C.

Fig. 21
Fig. 21

Maximum possible luminous reflectance (or transmittance) of materials producing indicated chromaticities when illuminated by standard Illuminant A.

Fig. 22
Fig. 22

Dependence of wave-length of maximum luminosity on adaptation (reference 609).

Fig. 23
Fig. 23

Just noticeable difference of wave-length as a function of wave-length.

Fig. 24
Fig. 24

Equally noticeable differences of colorimetric purity, as functions of colorimetric purity for dominant wave-lengths 460 and 570 mμ (observer WDW, reference 631). These differences are approximately three times the just noticeable differences, and approximately twenty times the probable error of color matching.

Fig. 25
Fig. 25

Equally noticeable differences of colorimetric purity for dominant wave-lengths 480 and 580 mμ.

Fig. 26
Fig. 26

Equally noticeable differences of colorimetric purity for dominant wave-lengths 495 and 650 mμ.

Fig. 27
Fig. 27

Equally noticeable differences of colorimetric purity for dominant wave-length 530 mμ and its non-spectral complementary.

Tables (39)

Tables Icon

Table II * Energy distribution of the three I.C.I. standard illuminants A, B, C, for colorimetry.

Tables Icon

Table IIIa Average spectral distribution of five phases of daylight.

Tables Icon

Table IIIb Spectral distribution of sunlight. The data in this table are based on measurements by Abbot and associates. The values at ten-millimicron intervals were interpolated by K. S. Gibson and associates at the National Bureau of Standards.

Tables Icon

Table IIIc Solar irradiance at normal incidence and mean solar distance.

Tables Icon

Table IV Spectral distribution of practical sources of artificial daylight.*

Tables Icon

Table V Standard luminosity data and spectral distribution of luminous flux from standard illuminants.

Tables Icon

Table VI Tristimulus values of the spectrum.

Tables Icon

Table VII Tristimulus computation data for standard (I.C.I. 1931) illuminants.

Tables Icon

Table VIII Tristimulus computational data for Planckian radiators. (Based on unpublished tables supplied by the National Bureau of Standards.)

Tables Icon

Table IX Tristimulus computation data for five phases of natural daylight.

Tables Icon

Table X Tristimulus computation data for sources of artificial daylight.

Tables Icon

Table XI Tristimulus computation for filter.a

Tables Icon

Table XII Selected ordinates for evaluation of radiant energy.

Tables Icon

Table XIII Selected ordinate evaluation of light from Planckian radiator at temperature of freezing platinum.

Tables Icon

Table XIV Selected ordinates for standard illuminants (I.C.I., 1931).

Tables Icon

Table XV Selected ordinate evaluation of reflecting sample for standard Illuminant C.

Tables Icon

Table XVI Supplementary selected ordinates for evaluation of radiant energy (or for illuminant having equal energy distribution in spectrum).

Tables Icon

Table XVII Supplementary selected ordinates for standard illuminants (I.C.I., 1931).

Tables Icon

Table XVIII Example of use of supplementary ordinates for evaluation of light from Planckian radiator at temperature of freezing platinum. (Wave-lengths given in Table XVI.)

Tables Icon

Table XIX Selected ordinates for X tristimulus value with Planckian illuminants.

Tables Icon

Table XX Selected ordinates for Y tristimulus value with Planckian illuminants.

Tables Icon

Table XXI Selected ordinates for Z tristimulus value with Planckian illuminants.

Tables Icon

Table XXII Supplementary ordinates for tristimulus values with Planckian illuminants.

Tables Icon

Table XXIII Selected ordinates for X evaluation for Planckian illuminants.

Tables Icon

Table XXIV Selected ordinates for Y evaluation for Planckian illuminants.

Tables Icon

Table XXV Selected ordinates for Z evaluation for Planckian illuminants.

Tables Icon

Table XXVI Selected ordinates for five phases of natural daylight.

Tables Icon

Table XXVII Selected ordinates for sources of artificial daylight.

Tables Icon

Table XXVIII Trichromatic coordinates of the spectrum.

Tables Icon

Table XXIXa Trichromatic coordinates of various illuminants.

Tables Icon

Table XXIXb Trichromatic coordinates of Planckian radiators (c2=1.436).

Tables Icon

Table XXX Coordinates of non-spectral colors of maximum purity.

Tables Icon

Table XXXI Coefficients for conversion from excitation to colorimetric purity for Illuminant A.

Tables Icon

Table XXXII Coefficients for conversion from excitation to colorimetric purity for Illuminant B.

Tables Icon

Table XXXIII Coefficients for conversion from excitation to colorimetric purity for Illuminant C.

Tables Icon

Table XXXIV Correlation of Wien and Planck color temperatures.

Tables Icon

Table XXXV List of complementary wave-lengths for Illuminant C,

Tables Icon

Table XXXVI Luminosity data for low levels of luminance (0.00007 millilambert).

Tables Icon

Table XXXVII Sensibility to luminance differences. (Two-part field with an unilluminated surround.) (Values of ΔB/B for 5° field, by Blanchard given to three decimal places.) (Values of ΔB/B for 3° field, by Lowry given to four decimal places.)

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

K = K max ( y ¯ λ P λ d λ / P λ d λ ) .
K / K max = 0 y ¯ λ P λ d λ / 0 P λ d λ .
T = 0 t λ y ¯ λ P λ d λ / 0 y ¯ λ P λ d λ ,
R = 0 r λ y ¯ λ P λ d λ / 0 y ¯ λ P λ d λ .
X = K max 0 x ¯ λ P λ d λ ,
Y = K max 0 y ¯ λ P λ d λ = F ,
Z = K max 0 z ¯ λ P λ d λ .
X = 0 x ¯ λ P λ r λ d λ / 0 y ¯ λ P λ d λ ,
Y = 0 y ¯ λ P λ r λ d λ / 0 y ¯ λ P λ d λ = R ,
Z = 0 z ¯ λ P λ r λ d λ / 0 y ¯ λ P λ d λ .
0 x ¯ λ P λ d λ / 0 y ¯ λ P λ d λ .
0 z ¯ λ P λ d λ / 0 y ¯ λ P λ d λ .
K m = 58.9 π / 0.2840 = 651.5 international lumens per watt .
x = X / ( X + Y + Z ) .
y = Y / ( X + Y + Z ) .
p e ( x - x a ) / ( x b - x a ) = ( y - y a ) / ( y b - y a ) .
p c = ( y b / y ) ( x - x a ) / ( x b - x a ) = ( y b / y ) ( y - y a ) / ( y b - y a ) .
p c = ( y c / y ) ( x - x a ) / ( x c - x a ) = ( y c / y ) ( y - y a ) / ( y c - y a ) .
p e = p c / ( e - f · p c ) .
e = y b / y a .
f = e - 1.
e = ( y c / y a ) ( y b - y a ) / ( y c - y a ) .
f = ( y b - y a ) / y a .
p c = e · p e / ( 1 + f · p e ) .
λ 0 = 0 λ · t λ · P λ · y ¯ λ · d λ / 0 t λ · P λ · y ¯ λ · d λ .
X = X 1 + X 2 ,
Y = Y 1 + Y 2 ,
Z = Z 1 + Z 2 .
x = ( x 1 m 1 + x 2 m 2 ) / ( m 1 + m 2 ) ,
y = ( y 1 m 1 + y 2 m 2 ) / ( m 1 + m 2 ) ,
m 1 = X 1 + Y 1 + Z 1
m 2 = X 2 + Y 2 + Z 2 .
u = ( a x + b y ) / ( y + c x + d ) ,
v = e y / ( y + c x + d ) .
O P / O Y = 1 + d .
O Q / O X = 1 + d / c .
u = 0.4661 x + 0.1593 y y - 0.15735 x + 0.2424 ,
v = 0.6581 y y - 0.15735 x + 0.2424 .
u = 0.7083 x + 0.2421 y y - 0.15735 x + 0.2424 ,
v = y y - 0.15735 x + 0.2424 .
L = ( y / y ) · ( y - y n ) / ( y n - y ) ,
L = ( y / y ) · ( x - x n ) / ( x n - x ) ,
L / y + 1 / y = ( 1 + L ) / y n .