Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hecht, J. Opt. Soc. Am. 32, 40 (1942).
  2. Parry Moon, J. Opt. Soc. Am. 32, 348 (1942).
    [Crossref]
  3. W. S. Stiles and B. H. Crawford, Discussion on Vision (Cambridge University Press, London, 1932), p. 194; W. S. Stiles, Proc. Roy. Soc. London 104B, 322 (1929).
    [Crossref]
  4. L. L. Holladay, J. Opt. Soc. Am. 12, 271 (1926); J. Opt. Soc. Am. 14, 1 (1927).
    [Crossref]
  5. D. E. Spencer, J. Opt. Soc. Am. 33, 10 (1943).
    [Crossref]
  6. D. E. Spencer, “Adaptation in color space,” presented at Summer Meeting of O.S.A., Cambridge, Massachusetts, July 22, 1942.
  7. B. H. Crawford, Proc. Phys. Soc. 48, 35 (1936).
    [Crossref]
  8. Pub. Dept. Sci. Ind. Res., Illum. Res., 1937; W. Arndt, Das Licht 3, 213 (1933).
  9. W. S. Stiles and C. Dunbar, Illum. Res. Comm. (Great Britain), 1935.
  10. Tables of Sine, Cosine, and Exponential Integrals (Nat. Bur. Stand., Washington, D. C., 1940).
  11. E. Jahnke and F. Emde, Funktionentafeln (Teubner, Leipzig, 1938); British Assn. Adv. Sci., Mathematical Tables (Cambridge University Press, London, 1931), Vol. I.
  12. W. S. Stiles, Proc. Roy. Soc. London 105B, 131 (1929).
    [Crossref]
  13. W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. 122B, 255 (1937).
    [Crossref]
  14. M. Luckiesh and L. L. Holladay, J. Opt. Soc. Am. 11, 311 (1925); W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. 116B, 98 (1934).
    [Crossref]
  15. Illum. Res. Comm. (Great Britain), 1937.
  16. P. Moon and D. E. Spencer, J. Opt. Soc. Am. 33, 89 (1943).
    [Crossref]
  17. P. Moon and D. E. Spencer, J. Opt. Soc. Am. 33, 260 (1943).
    [Crossref]
  18. D. L. MacAdam, J. Opt. Soc. Am. 32, 247 (1942).
    [Crossref]
  19. W. H. Marshall and S. A. Talbot, Biol. Symposia 7, 138 (1942).

1943 (3)

1942 (4)

1937 (1)

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. 122B, 255 (1937).
[Crossref]

1936 (1)

B. H. Crawford, Proc. Phys. Soc. 48, 35 (1936).
[Crossref]

1929 (1)

W. S. Stiles, Proc. Roy. Soc. London 105B, 131 (1929).
[Crossref]

1926 (1)

1925 (1)

Crawford, B. H.

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. 122B, 255 (1937).
[Crossref]

B. H. Crawford, Proc. Phys. Soc. 48, 35 (1936).
[Crossref]

W. S. Stiles and B. H. Crawford, Discussion on Vision (Cambridge University Press, London, 1932), p. 194; W. S. Stiles, Proc. Roy. Soc. London 104B, 322 (1929).
[Crossref]

Dunbar, C.

W. S. Stiles and C. Dunbar, Illum. Res. Comm. (Great Britain), 1935.

Emde, F.

E. Jahnke and F. Emde, Funktionentafeln (Teubner, Leipzig, 1938); British Assn. Adv. Sci., Mathematical Tables (Cambridge University Press, London, 1931), Vol. I.

Hecht, S.

Holladay, L. L.

Jahnke, E.

E. Jahnke and F. Emde, Funktionentafeln (Teubner, Leipzig, 1938); British Assn. Adv. Sci., Mathematical Tables (Cambridge University Press, London, 1931), Vol. I.

Luckiesh, M.

MacAdam, D. L.

Marshall, W. H.

W. H. Marshall and S. A. Talbot, Biol. Symposia 7, 138 (1942).

Moon, P.

Moon, Parry

Spencer, D. E.

Stiles, W. S.

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. 122B, 255 (1937).
[Crossref]

W. S. Stiles, Proc. Roy. Soc. London 105B, 131 (1929).
[Crossref]

W. S. Stiles and C. Dunbar, Illum. Res. Comm. (Great Britain), 1935.

W. S. Stiles and B. H. Crawford, Discussion on Vision (Cambridge University Press, London, 1932), p. 194; W. S. Stiles, Proc. Roy. Soc. London 104B, 322 (1929).
[Crossref]

Talbot, S. A.

W. H. Marshall and S. A. Talbot, Biol. Symposia 7, 138 (1942).

Biol. Symposia (1)

W. H. Marshall and S. A. Talbot, Biol. Symposia 7, 138 (1942).

J. Opt. Soc. Am. (8)

Proc. Phys. Soc. (1)

B. H. Crawford, Proc. Phys. Soc. 48, 35 (1936).
[Crossref]

Proc. Roy. Soc. (1)

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. 122B, 255 (1937).
[Crossref]

Proc. Roy. Soc. London (1)

W. S. Stiles, Proc. Roy. Soc. London 105B, 131 (1929).
[Crossref]

Other (7)

Illum. Res. Comm. (Great Britain), 1937.

Pub. Dept. Sci. Ind. Res., Illum. Res., 1937; W. Arndt, Das Licht 3, 213 (1933).

W. S. Stiles and C. Dunbar, Illum. Res. Comm. (Great Britain), 1935.

Tables of Sine, Cosine, and Exponential Integrals (Nat. Bur. Stand., Washington, D. C., 1940).

E. Jahnke and F. Emde, Funktionentafeln (Teubner, Leipzig, 1938); British Assn. Adv. Sci., Mathematical Tables (Cambridge University Press, London, 1931), Vol. I.

D. E. Spencer, “Adaptation in color space,” presented at Summer Meeting of O.S.A., Cambridge, Massachusetts, July 22, 1942.

W. S. Stiles and B. H. Crawford, Discussion on Vision (Cambridge University Press, London, 1932), p. 194; W. S. Stiles, Proc. Roy. Soc. London 104B, 322 (1929).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Glare source in the field of view.

Fig. 2
Fig. 2

Spherical coordinate system used in the calculation of the glare effect.

Fig. 3
Fig. 3

A two-part visual field.

Fig. 4
Fig. 4

Effect of changing the helios of the outer part of the visual field.

Figs. 5–8
Figs. 5–8

Examples of visual fields.

Fig. 9
Fig. 9

The C.I.E. chromaticity diagram, showing the effect on adaptation of changing the colors of the outer and inner parts of the field.

Fig. 10
Fig. 10

Eye movements.

Fig. 11
Fig. 11

Integrands of Eq. (32).

Tables (1)

Tables Icon

Table I Effect of the size of surround. Θ1 = 0.0131, Ci(2Θ1) = −3.0650.

Equations (53)

Equations on this page are rendered with MathJax. Learn more.

V A ( t ) = [ X A ( t ) , Y A ( t ) , Z A ( t ) ] ,
β = B + ( k D G / θ n ) .
H A = K D G / θ 2 ,
d D G = [ H ( θ , ϕ ) / π ] cos θ d ω .
d ω = ( d ϕ sin θ ) d θ
d D G = [ H ( θ , ϕ ) / π ] sin θ cos θ d θ d ϕ .
d H A = [ K H ( θ , ϕ ) / π θ 2 ] sin θ cos θ d θ d ϕ .
H A = K π Φ 1 Φ 2 d ϕ Θ 1 Θ 2 H ( θ , ϕ ) θ 2 sin θ cos θ d θ .
H A = 2 K H Θ 1 Θ 2 sin θ cos θ d θ θ 2 .
sin θ cos θ = 1 2 sin 2 θ ,
H A = 2 K H 2 Θ 1 2 Θ 2 sin x d x x 2 .
sin x d x x 2 = - sin x x + cos x d x x
H A = 2 K H [ sin 2 Θ 1 2 Θ 1 - sin 2 Θ 2 2 Θ 2 - 2 Θ 1 cos x d x x + 2 Θ 2 cos x d x x ] .
H A / H = 2 K [ 1 - sin 2 Θ 2 2 Θ 2 - C i ( 2 Θ 1 ) + C i ( 2 Θ 2 ) ] ,
H A = 0.923 H B + K π Φ 1 Φ 2 d ϕ × Θ 1 Θ 2 H ( θ , ϕ ) θ 2 sin θ cos θ d θ .
H A = 0.923 H B + 0.0192 Θ 1 Θ 2 H ( θ ) θ 2 sin θ cos θ d θ .
H A = 0.923 H 1 + 0.0192 { H 1 [ 1 - C i ( 2 Θ 1 ) ] - H 2 [ sin 2 Θ 2 2 Θ 2 - C i ( 2 Θ 2 ) ] - ( H 1 - H 2 ) [ sin 2 Θ 3 2 Θ 3 - C i ( 2 Θ 3 ) ] } .
H A = 0.923 [ H 1 Θ 3 2 + H 2 ( Θ 1 2 - Θ 3 2 ) Θ 1 2 ] + 0.0192 H 2 [ 1 - sin 2 Θ 2 2 Θ 2 - C i ( 2 Θ 1 + C i ( 2 Θ 2 ) ] .
H 2 = k H 1 .
H A / H 1 = 0.923 + 0.0192 [ ( 1 - C i ( 2 Θ 1 ) ) - k ( sin 2 Θ 2 2 Θ 2 - C i ( 2 Θ 2 ) ) ] - 0.0192 ( 1 - k ) [ sin 2 Θ 3 2 Θ 3 - C i ( 2 Θ 3 ) ]
H A / H 1 = [ 1.0006 - 0.0006 k ] - 0.0192 ( 1 - k ) [ sin 2 Θ 3 2 Θ 3 - C i ( 2 Θ 3 ) ] .
H A / H 1 = 1.0006 - 0.0192 Q ; k = 0.1 , H A / H 1 = 1.0005 - 0.0173 Q ; k = 0.5 , H A / H 1 = 1.0003 - 0.0096 Q ; k = 1.0 , H A / H 1 = 1.0000 ; k = 1.5 , H A / H 1 = 0.9997 + 0.0096 Q ; k = 2.0 , H A / H 1 = 0.9994 + 0.0192 Q ;
Q = sin 2 Θ 3 2 Θ 3 - C i ( 2 Θ 3 ) .
H A / H 1 = 0.923 [ k Θ 1 2 + ( 1 - k ) Θ 3 2 Θ 1 2 ] + 0.0192 k [ 1 - sin 2 Θ 2 2 Θ 2 - C i ( 2 Θ 1 ) + C i ( 2 Θ 2 ) ] ,
H A / H 1 = k + 5380 ( 1 - k ) Θ 3 2 .
H A / H 1 = 5380 Θ 3 2 ; k = 0.5 , H A / H 1 = 0.500 + 2690 Θ 3 2 ; k = 1.0 , H A / H 1 = 1.000 ; k = 1.5 , H A / H 1 = 1.500 - 2690 Θ 3 2 ; k = 2.0 , H A / H 1 = 2.000 - 5380 Θ 3 2 .
H s Θ 1 Θ 2 sin θ cos θ d θ θ = H s 2 2 Θ 1 2 Θ 2 sin x d x x = H s 2 [ S i ( 2 Θ 1 ) - S i ( 2 Θ 2 ) ]
H A = 0.923 H B + 0.0096 H s × [ S i ( 2 Θ 1 ) - S i ( 2 Θ 2 ) ] .
H A = 1 π [ H A 1 α + H A 2 ( π - α ) ] .
H A = H 1 / 3 + 2 H 2 / 3.
H A = H A 1 / 2 + H A 2 ( α 2 + α 3 ) 2 π + H A 3 ( π - α 2 - α 3 ) 2 π .
H A = H 2 + ( H 1 - H 2 ) π [ cos - 1 Θ - Θ ( 1 - Θ 2 ) 1 2 ] .
H A = H 2 + ( H 1 + H 2 ) π a 2 { a 2 [ ψ - sin ψ cos ψ ] + b 2 [ ξ - sin ξ cos ξ ] } .
H ( θ , ϕ ) = 0 v ( λ ; θ , ϕ ) · H λ ( θ , ϕ ) d λ ,
X A = k 1 X B + K 1 π d ϕ X ( θ , ϕ ) θ f 1 sin θ cos θ d θ Y A = k 2 Y B + K 2 π d ϕ Y ( θ , ϕ ) θ f 2 sin θ cos θ d θ , Z A = k 3 Z B + K 3 π d ϕ Z ( θ , ϕ ) θ f 3 sin θ cos θ d θ . }
X ( θ , ϕ ) = 0 x ¯ ( λ ; θ , ϕ ) · H λ ( θ , ϕ ) d λ , Y ( θ , ϕ ) = 0 y ¯ ( λ ; θ , ϕ ) · H λ ( θ , ϕ ) d λ , Z ( θ , ϕ ) = 0 z ¯ ( λ ; θ , ϕ ) · H λ ( θ , ϕ ) d λ . }
H A = 0.923 H B + 9.6 × 10 - 3 π Φ 1 Φ 2 d ϕ × Θ 1 Θ 2 H ( θ , ϕ ) θ 2 sin θ cos θ d θ ,
X A = 0.923 X B + 9.6 × 10 - 3 π Φ 1 Φ 2 d ϕ × Θ 1 Θ 2 X ( θ , ϕ ) θ 2 sin θ cos θ d θ , Y A = 0.923 Y B + 9.6 × 10 - 3 π Φ 1 Φ 2 d ϕ × Θ 1 Θ 2 Y ( θ , ϕ ) θ 2 sin θ cos θ d θ , Z A = 0.923 Z B + 9.6 × 10 - 3 π Φ 1 Φ 2 d ϕ × Θ 1 Θ 2 Z ( θ , ϕ ) θ 2 sin θ cos θ d θ , }
H ( θ , ϕ ) = 0 v ( λ ) · H λ ( θ , ϕ ) d λ ,
X ( θ , ϕ ) = 0 x ¯ ( λ ) · H λ ( θ , ϕ ) d λ , Y ( θ , ϕ ) = 0 y ¯ ( λ ) · H λ ( θ , ϕ ) d λ , Z ( θ , ϕ ) = 0 z ¯ ( λ ) · H λ ( θ , ϕ ) d λ . }
X A = 0.928 X 1 + 5.05 , Y A = 143.8 , Z A = 0.928 Z 1 + 6.05. }
X A = 293 + 0.0637 X 2 , Y A = 143.8 , Z A = 59.6 + 0.0637 Z 2 , }
H ¯ A = K w ( θ ) · H A ( θ , ϕ ) · θ d θ d ϕ ,
K = [ w ( θ ) · θ d θ d ϕ ] - 1 .
H ¯ A = H A ( θ ) θ d θ θ d θ .
H ¯ A = H 1 0 Θ 3 θ d θ + H 2 Θ 3 Θ 2 θ d θ 0 Θ 2 θ d θ = H 1 Θ 3 2 + H 2 ( Θ 2 2 - Θ 3 2 ) Θ 2 2 .
H ¯ A = 1 n + 1 H i S i 1 n + 1 S i .
w ( θ ) · θ = exp ( - θ 2 / 2 σ 2 ) .
H ¯ A = exp ( - θ 2 2 σ 2 ) H A ( θ , ϕ ) d θ d ϕ exp ( - θ 2 2 σ 2 ) d θ d ϕ .
H s = ( K I / r 2 ) ( cos θ / θ 2 )
H A = K I r 2 exp ( - θ 2 2 σ 2 ) cos θ θ 2 d θ exp ( - θ 2 2 σ 2 ) d θ .
σ = 2.92 × 10 - 3 radian ,
H ¯ A = ( 2 / π ) 1 2 0 θ exp ( - θ 2 2 σ 2 ) H A ( θ ) d θ .