Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Toy, Phot. J. 49, 164 (April, 1925).
  2. P. Renwick, Phot. J. 49, 293 (June, 1925).
  3. F. C. Toy, Phot. J. 49, 294 (June, 1925).
  4. W. B. Ferguson, Phot. J. 50, 294 (June, 1926).
  5. C. Tuttle and A. Koerner, J. Soc. Mot. Pic. Eng. 29, 622 (Dec.1937).
  6. C. Mees, Theory of the Photographic Process (Macmillan, New York, 1942), Chapter 16, p. 638.
  7. M. H. Sweet, J.P.S.A. 7, 126 (Oct.1941).
  8. M. H. Sweet, J. Opt. Soc. Am. 32, 324 (1942).
    [Crossref]
  9. W. E. Forsythe, Editor, Measurement of Radiant Energy (McGraw-Hill, New York, 1937) Chapter VIII, L. A. Jones, p. 269.
  10. R. G. Hopkinson, Brit. J. Phot. 86, 234 (April14, 1939).
  11. Martens, Phot. Korr 39, 528 (1901).
  12. J. G. Frayne and G. R. Crane, J. Soc. Mot. Pic. Eng. 25, 184 (Aug.1940).
  13. J. C. Frayne, J. Soc. Mot. Pic. Eng. 36, 622 (June, 1941).
  14. B. C. Hiatt, J. Soc. Mot. Pic. Eng. 26, 195 (Feb.1936).
  15. A. M. Koerner and C. Tuttle, J. Opt. Soc. Am. 27, 274 (1934).
  16. J. W. T. Walsh, Photometry (Constable & Co., Ltd., 1929), Chapter IV, p. 102.

1942 (1)

1941 (2)

M. H. Sweet, J.P.S.A. 7, 126 (Oct.1941).

J. C. Frayne, J. Soc. Mot. Pic. Eng. 36, 622 (June, 1941).

1940 (1)

J. G. Frayne and G. R. Crane, J. Soc. Mot. Pic. Eng. 25, 184 (Aug.1940).

1939 (1)

R. G. Hopkinson, Brit. J. Phot. 86, 234 (April14, 1939).

1937 (1)

C. Tuttle and A. Koerner, J. Soc. Mot. Pic. Eng. 29, 622 (Dec.1937).

1936 (1)

B. C. Hiatt, J. Soc. Mot. Pic. Eng. 26, 195 (Feb.1936).

1934 (1)

A. M. Koerner and C. Tuttle, J. Opt. Soc. Am. 27, 274 (1934).

1926 (1)

W. B. Ferguson, Phot. J. 50, 294 (June, 1926).

1925 (3)

F. C. Toy, Phot. J. 49, 164 (April, 1925).

P. Renwick, Phot. J. 49, 293 (June, 1925).

F. C. Toy, Phot. J. 49, 294 (June, 1925).

1901 (1)

Martens, Phot. Korr 39, 528 (1901).

Crane, G. R.

J. G. Frayne and G. R. Crane, J. Soc. Mot. Pic. Eng. 25, 184 (Aug.1940).

Ferguson, W. B.

W. B. Ferguson, Phot. J. 50, 294 (June, 1926).

Frayne, J. C.

J. C. Frayne, J. Soc. Mot. Pic. Eng. 36, 622 (June, 1941).

Frayne, J. G.

J. G. Frayne and G. R. Crane, J. Soc. Mot. Pic. Eng. 25, 184 (Aug.1940).

Hiatt, B. C.

B. C. Hiatt, J. Soc. Mot. Pic. Eng. 26, 195 (Feb.1936).

Hopkinson, R. G.

R. G. Hopkinson, Brit. J. Phot. 86, 234 (April14, 1939).

Jones, L. A.

W. E. Forsythe, Editor, Measurement of Radiant Energy (McGraw-Hill, New York, 1937) Chapter VIII, L. A. Jones, p. 269.

Koerner, A.

C. Tuttle and A. Koerner, J. Soc. Mot. Pic. Eng. 29, 622 (Dec.1937).

Koerner, A. M.

A. M. Koerner and C. Tuttle, J. Opt. Soc. Am. 27, 274 (1934).

Martens,

Martens, Phot. Korr 39, 528 (1901).

Mees, C.

C. Mees, Theory of the Photographic Process (Macmillan, New York, 1942), Chapter 16, p. 638.

Renwick, P.

P. Renwick, Phot. J. 49, 293 (June, 1925).

Sweet, M. H.

M. H. Sweet, J. Opt. Soc. Am. 32, 324 (1942).
[Crossref]

M. H. Sweet, J.P.S.A. 7, 126 (Oct.1941).

Toy, F. C.

F. C. Toy, Phot. J. 49, 164 (April, 1925).

F. C. Toy, Phot. J. 49, 294 (June, 1925).

Tuttle, C.

C. Tuttle and A. Koerner, J. Soc. Mot. Pic. Eng. 29, 622 (Dec.1937).

A. M. Koerner and C. Tuttle, J. Opt. Soc. Am. 27, 274 (1934).

Walsh, J. W. T.

J. W. T. Walsh, Photometry (Constable & Co., Ltd., 1929), Chapter IV, p. 102.

Brit. J. Phot. (1)

R. G. Hopkinson, Brit. J. Phot. 86, 234 (April14, 1939).

J. Opt. Soc. Am. (2)

A. M. Koerner and C. Tuttle, J. Opt. Soc. Am. 27, 274 (1934).

M. H. Sweet, J. Opt. Soc. Am. 32, 324 (1942).
[Crossref]

J. Soc. Mot. Pic. Eng. (4)

C. Tuttle and A. Koerner, J. Soc. Mot. Pic. Eng. 29, 622 (Dec.1937).

J. G. Frayne and G. R. Crane, J. Soc. Mot. Pic. Eng. 25, 184 (Aug.1940).

J. C. Frayne, J. Soc. Mot. Pic. Eng. 36, 622 (June, 1941).

B. C. Hiatt, J. Soc. Mot. Pic. Eng. 26, 195 (Feb.1936).

J.P.S.A. (1)

M. H. Sweet, J.P.S.A. 7, 126 (Oct.1941).

Phot. J. (4)

F. C. Toy, Phot. J. 49, 164 (April, 1925).

P. Renwick, Phot. J. 49, 293 (June, 1925).

F. C. Toy, Phot. J. 49, 294 (June, 1925).

W. B. Ferguson, Phot. J. 50, 294 (June, 1926).

Phot. Korr (1)

Martens, Phot. Korr 39, 528 (1901).

Other (3)

J. W. T. Walsh, Photometry (Constable & Co., Ltd., 1929), Chapter IV, p. 102.

C. Mees, Theory of the Photographic Process (Macmillan, New York, 1942), Chapter 16, p. 638.

W. E. Forsythe, Editor, Measurement of Radiant Energy (McGraw-Hill, New York, 1937) Chapter VIII, L. A. Jones, p. 269.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

General arrangement of optical parts used for the improved technique of measuring contact printing density.

Fig. 2
Fig. 2

C.P.D. measuring system showing rear of test and reference printing frames.

Fig. 3
Fig. 3

Optical system used in the measurement of C.P.D. (Baffle not shown.)

Fig. 4
Fig. 4

Component parts of light source (with exception of opal glass which is not visible in this view).

Fig. 5
Fig. 5

Rear view of reference printing frame.

Fig. 6
Fig. 6

Rear view of test printing frame.

Fig. 7
Fig. 7

Construction of test printing frame.

Fig. 8
Fig. 8

a. Electrical circuit used for the present work. b. Alternative circuit for use where a voltage regulator is not available.

Fig. 9
Fig. 9

Method of developing reference and test strips.

Fig. 10
Fig. 10

Geometry of reflections existing when the test printing frame is near the light source.

Fig. 11
Fig. 11

Comparison of C.P.D. measurements made using a base distance of 2 meters and those made using a base distance of approximately 8 meters.

Fig. 12
Fig. 12

Wedge spectrograms of the photographic papers tested as print materials for determining C.P.D. (Wave-length values are millimicrons ×10−1.)

Fig. 13
Fig. 13

Relative spectral response of the photo-tube-filter combinations used in the E.R.P.I. model R.A. 1100 densitometer. The OG-1 filter is used where visual density is desired, the BG-12 filter for measuring printing density. Redrawn from data by Frayne (reference 14).

Fig. 14
Fig. 14

Modified Hiatt and Tuttle plan for photoelectric measurement of diffuse density.

Fig. 15
Fig. 15

Spectral response of RCA 929 photo-tube (used in E.R.P.I. and Ansco Model 11 densitometers) and the barrier layer photo-cell used in an experimental method of density measurement (manufacturer’s data).

Fig. 16
Fig. 16

Results of density measurements by various primary methods of Wedge E (a photographic wedge). □ ⋯⋯ —Visual diffuse density (Martens); ○– — – — —E.R.P.I. printing density; ●—— —Experimental; x – – – —E.R.P.I. visual.

Fig. 17
Fig. 17

Fundamental density measurements of Wedge F (process emulsion, underdeveloped).

Fig. 18
Fig. 18

Fundamental density measurements of Wedge G. (A photographic wedge processed under normal conditions.)

Fig. 19
Fig. 19

Diagram showing the configuration assumed by the disk source and receiver in the present optical system.

Fig. 20
Fig. 20

Diagram illustrating the notation used in the mathematical treatment.

Tables (7)

Tables Icon

Table A Auxiliary table for computing test frame—light source distances for any base distances. Multiply the base distance by X(col.(3)) to find the test frame—light source distance for a given equivalent density.

Tables Icon

Table B Density errors due to a mistake in positioning test frame. From Eq. (6) the density errors ϵ introduced by a mistake of 1 mm in positioning the test frame for a base distance of 200 cm have been calculated.

Tables Icon

Table C Test density data for wedge H.

Tables Icon

Table D Null point check data for wedge H.

Tables Icon

Table E Density values for wedge E.

Tables Icon

Table F Density values for wedge F.

Tables Icon

Table G Density values for wedge G.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

D = log 0 ,
d ( reference ) = d ( test )
C.P.D. D ( eq. ) + ( d ( R ) - d ( T ) ) · 0.05 Av. Δ ,
C.P.D. = 1.05 + .80 - .86 .15 × .05 , = 1.03.
Δ d ( Av. print ) = ϵ d × γ ,
γ = Av. Δ / 0.05.
True C.P.D. = Eq. D + d ( R ) - d ( T ) γ .
D p = log F 0 / F 1 ,
x = t ( 1 - 1 / n ) ,
D p = log F 0 / F ,
F 0 / F = ( X 1 / X 0 ) 2 ,
D p = 2 log X 1 - 2 log X 0
d D p = 2 ( log e ) ( d X 1 / X 1 - d X 0 / X 0 ) .
d D p = - 2 ( log e ) d X 0 / X 0 ;
d D p = - .8686 ( d X 0 antilog ( log X 1 - D p / 2 ) ) .
Δ d ( Av. print ) = ϵ D · γ .
γ = Av. Δ / 0.05.
True C.P.D. = Eq. D - ( d ( T ) - d ( R ) γ ) .
F u = B b r 2 / d 2 ,
F c = 2 π B b d 2 x = ρ - r x = ρ + r y = 0 y = [ r 2 - ( x - ρ ) 2 ] 1 2 × 1 ( d 2 - x 2 - y 2 ) 2 d y d x .
F c = 1 2 π b B [ 1 - c c 2 + r 2 ] ,
c ( d 2 - r 2 - ρ 2 ) 2 d .
log ( F u F C )
log ( F C ( 1 antilog D L ) 2 π B b ρ - r ρ + r 0 [ r 2 - ( x - ρ ) 2 ] 1 D 2 · cos 2 ϕ 1 antilog D · n ( n 2 - sin 2 ϕ ) 1 2 d y d x ) ,