Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photoelectric Tristimulus Colorimetry with Three Filters

Not Accessible

Your library or personal account may give you access

Abstract

The term, photoelectric colorimetry, is commonly employed to designate both photoelectric tristimulus colorimetry, used to evaluate the appearance of materials, and abridged spectrophotometry, often used to assist in chemical analyses. This paper is devoted to the first type of measurement. For a photoelectric tristimulus colorimeter, it is desired to find three or more source-filter photo-cell combinations of such spectral character that they duplicate the standard I.C.I. observer for colorimetry. With an instrument having these combinations, tristimulus values would be obtained by direct measurement. Although no one has duplicated the I.C.I. observer perfectly, several investigators have obtained source-filter photo-cell combinations suitable for the measurement of color differences between spectrally similar samples. To measure color differences as small as those which the trained inspectors of paint, textile, plastic, paper, and ceramic products can see, an instrument must have high precision. If the needed precision is available, a photoelectric tristimulus colorimeter may be used to measure: (1) I.C.I. colorimetric values, x, y, and Y, relative to those of a spectrally similar, calibrated standard; (2) relative values of α and β, components of the chromaticity departure from neutral in a new uniform-chromaticness-scale mixture diagram for representing surface colors; (3) amounts of color difference between pairs of spectrally similar samples; (4) amounts of color change accompanying fading; and (5) whiteness of white and near-white surfaces. In giving examples of the measurement of some of these different properties and in describing the errors of color measurement to which the tristimulus method is subject, reference is made to operations with the author’s recently developed multipurpose photoelectric reflectometer.

© 1942 Optical Society of America

Full Article  |  PDF Article
More Like This
A Multipurpose Photoelectric Reflectometer

Richard S. Hunter
J. Opt. Soc. Am. 30(11) 536-559 (1940)

Photoelectric Color Difference Meter*

Richard S. Hunter
J. Opt. Soc. Am. 48(12) 985-995 (1958)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (16)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (72)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.