Abstract

The term, photoelectric colorimetry, is commonly employed to designate both photoelectric tristimulus colorimetry, used to evaluate the appearance of materials, and abridged spectrophotometry, often used to assist in chemical analyses. This paper is devoted to the first type of measurement. For a photoelectric tristimulus colorimeter, it is desired to find three or more source-filter photo-cell combinations of such spectral character that they duplicate the standard I.C.I. observer for colorimetry. With an instrument having these combinations, tristimulus values would be obtained by direct measurement. Although no one has duplicated the I.C.I. observer perfectly, several investigators have obtained source-filter photo-cell combinations suitable for the measurement of color differences between spectrally similar samples. To measure color differences as small as those which the trained inspectors of paint, textile, plastic, paper, and ceramic products can see, an instrument must have high precision. If the needed precision is available, a photoelectric tristimulus colorimeter may be used to measure: (1) I.C.I. colorimetric values, x, y, and Y, relative to those of a spectrally similar, calibrated standard; (2) relative values of α and β, components of the chromaticity departure from neutral in a new uniform-chromaticness-scale mixture diagram for representing surface colors; (3) amounts of color difference between pairs of spectrally similar samples; (4) amounts of color change accompanying fading; and (5) whiteness of white and near-white surfaces. In giving examples of the measurement of some of these different properties and in describing the errors of color measurement to which the tristimulus method is subject, reference is made to operations with the author’s recently developed multipurpose photoelectric reflectometer.

© 1942 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Balinkin, “Industrial color tolerances,” Am J. Psychol. 52, 428 (1939).
    [CrossRef]
  2. B. T. Barnes, “A four-filter photoelectric colorimeter,” J. Opt. Soc. Am. 29, 448 (1939).
    [CrossRef]
  3. F. C. Breckenridge and W. R. Schaub, “Rectangular uniform-chromaticity-scale coordinates,” J. Opt. Soc. Am. 29, 370 (1939).
    [CrossRef]
  4. A. Dresler and H. G. Frühling, “Uber ein photoelektrisches Dreifarbenmessgerät,” Das Licht 8, 238 (1938).
  5. R. S. Estey, “The selection of color temperature altering filters,” J. Opt. Soc. Am. 26, 293 (1936).
    [CrossRef]
  6. Federal Standard Stock Catalog, Procurement Division, Washington, D. C., Federal Specification TT-P-53 for paint; outside, ready-mixed, medium-chrome-yellow (Feb.12, 1937).
  7. Federal Standard Stock Catalog, Procurement Division, Washington, D. C., Federal Specification TT-P-59 for paint; ready-mixed, international-orange (June17, 1937).
  8. Federal Standard Stock Catalog, Procurement Division, Washington, D. C., Federal Specification TT-P-23a for paint; cold-water, interior, light-tints and white (March22, 1940).
  9. H. P. Gage, “Color filters for altering color temperature. Pyrometer absorption and daylight glasses,” J. Opt. Soc. Am. 23, 46 (1933).
    [CrossRef]
  10. General Electric Company, The G. E. light-sensitive cell, Catalog GEA-2467 (1936);see also R. H. Mighell, “The light-sensitive cell,” Gen. Elec. Rev. 40, 372 (1937).
  11. K. S. Gibson, “Photoelectric photometers and colorimeters,” Instruments 9, 309 and 335 (1936);see also Nat. Bur. Stand. Letter Circular LC545, “Photoelectric colorimeters” (March8, 1939).
  12. K. S. Gibson and H. J. Keegan, “On the magnitude of the error resulting from fluorescence in spectrophotometric measurements,” J. Opt. Soc. Am. 28, 180 (1938).
  13. J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. Roy. Soc. A230, 149 (1931).
  14. J. Guild, “The instrumental side of colorimetry,” J. Sci. Inst. 11, 69 (1934).
    [CrossRef]
  15. A. C. Hardy, Handbook of ColorimetryThe Technology Press (Cambridge, 1936).
  16. R. S. Hunter, “Progress in developing a photoelectric method for measuring color difference,” Bull. Am. Ceramic Soc. 18, 121 (1939).
  17. R. S. Hunter, “Further progress in developing a photoelectric method for measuring color difference,” Bull. Am. Ceramic Soc. 19, 133 (1940).
  18. R. S. Hunter, “A multipurpose photoelectric reflectometer,” J. Research, Nat. Bur. Stand. 25, 581 (1940) RP1345;also [18a]J. Opt. Soc. Am. 30, 536 (1940).
    [CrossRef]
  19. R. S. Hunter, “Photoelectric tristimulus colorimetry,” part of Symposium on Color, published by the A.S.T.M., Philadelphia, Pennsylvania (1941).
  20. Institute of Paper Chemistry, Instrumentation studies, XX, A study of photoelectric instruments for the measurements of color, reflectance, and transmittance, Paper Trade J. 105, TS293 (1937).
  21. Institute of Paper Chemistry, Instrumentation studies XIII Adaptability of the G. E. reflection meter as a color analyzer, Paper Trade J. 104, TS245 (1937).
  22. International Commission on Illumination, Proceedings of the 8th Session, Commission Internationale de l’Éclairage, Cambridge, pp. 19–29 (Sept. 1931);see also reference [25].
  23. H. E. Ives, “A precision artificial eye,” Phys. Rev. 6, 334 (1915).
    [CrossRef]
  24. L. A. Jones, “Colorimetry; preliminary draft of a report on nomenclature and definitions,” J. Opt. Soc. Am. 27, 207 (1937).
    [CrossRef]
  25. D. B. Judd, The 1931 I.C.I. standard observer and coordinate system for colorimetry, J. Opt. Soc. Am. 23, 359 (1933).
    [CrossRef]
  26. D. B. Judd, “A Maxwell triangle yielding uniform chromaticity scales,” J. Research Nat. Bur. Stand. 14, 41 (1935), RP756;also J. Opt. Soc. Am. 25, 24 (1935).
    [CrossRef]
  27. D. B. Judd, “A method for determining whiteness of paper, II, Paper Trade J. 103, TS154 (1936);also Tech. Assoc. Papers, Series 19, 359 (1936).
  28. D. B. Judd, “Specification of color tolerances at the National Bureau of Standards,” Am. J. Psychol. 52, 418 (1939).
    [CrossRef]
  29. D. B. Judd, “Specification of uniform color tolerances for textiles,” Textile Research 9, 253, 292 (1939).
    [CrossRef]
  30. D. B. Judd, “Hue, saturation, and lightness of surface colors with chromatic illumination,” J. Research Nat. Bur. Stand. 24, 293 (1940) RP1285, andJ. Opt. Soc. Am. 30, 2 (1940).
    [CrossRef]
  31. D. B. Judd, “Color systems and their inter-relation,” Illum. Eng. 36, 336 (1941).
  32. D. B. Judd, “Whiteness of light surface-colors,” J. Opt. Soc. Am. 31, 462 (1941).
  33. D. B. Judd, “Introduction to Color,” part of Symposium on Color, published by the A.S.T.M., Philadelphia, Pennsylvania (1941).
  34. D. L. MacAdam, “Maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 361 (1935).
    [CrossRef]
  35. National Bureau of Standards, , “Preparation and colorimetric properties of a magnesium oxide reflectance standard” (1939).
  36. National Bureau of Standards, Commercial Standards CS62–38, “Colors for kitchen accessories,” andCS63–38, “Colors for bathroom accessories” (1937).
  37. S. M. Newhall, “Preliminary report of the O.S.A. Subcommittee on the spacing of the Munsell colors,” J. Opt. Soc. Am. 30, 617 (1940).
    [CrossRef]
  38. D. Nickerson, “Use of I.C.I. tristimulus values in disk colorimetry,” U. S. Department of Agriculture, Bureau of Agricultural Economics, Washington, D. C. (May, 1938).
  39. W. Ostwald, Colour Science; Part II, Colour Measurement and Colour Harmony (English trans.) p. 35, Winsor and Newton (London, 1933).
  40. J. W. Perry, “The objective measurement of color,” J. Sci. Inst. 15, 270 (1938).
    [CrossRef]
  41. I. G. Priest, “Apparatus for the determination of color in terms of dominant wave-length, purity, and brightness,” J. Opt. Soc. Am. 8, 173 (1924).
    [CrossRef]
  42. F. Scofield, D. B. Judd, and R. S. Hunter, “A proposed method of designating color,” A.S.T.M. Bulletin No. 110, p. 19 (May, 1941).
  43. F. W. Sears, “An improved calculator for obtaining tristimulus values from spectrophotometric curves,” J. Opt. Soc. Am. 29, 77 (1939).
    [CrossRef]
  44. J. F. Skogland, “Tables of spectral energy distribution and luminosity for use in computing light transmissions and relative brightnesses from spectrophotometric data,” Bur. Stand. Misc. Pub. No. 86 (1929); M86.
  45. T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. London 33, 74 (1931).
    [CrossRef]
  46. F. Twyman and J. Perry, “Improvements in or relating to colorimeters,” British Patent Spec. No. 324, 351, (Jan.20, 1930);Application dated Aug. 18, 1928.
  47. J. A. Van den Akker, “Chromaticity limitations of the best physically realizable three-filter photoelectric colorimeter,” J. Opt. Soc. Am. 27, 401 (1937).
    [CrossRef]
  48. A. W. VanHeuckeroth, “Effect of several factors upon the yellowing of some protective coatings,” Sci. Sec. Cir. No. 407 of the Nat. Paint, Varnish, and Lacquer Assn., Washington, D. C. (1932).
  49. S. Werthan, A. C. Elm, and R. H. Wien, “Yellowing of interior gloss paints and enamels,” Ind. Eng. Chem. 22, 772 (1930).
    [CrossRef]
  50. G. T. Winch and E. H. Palmer, “A direct reading photoelectric trichromatic colorimeter,” Trans. Illum. Eng. Soc. London 2, 137 (1937).
  51. W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141 (1928–29);“A re-determination of the trichromatic mixture data,” Medical Research Council, Reports of the Committee upon the Physiology of Vision, VII, Special Report Series No. 139, London, 1929.
    [CrossRef]

1941 (3)

D. B. Judd, “Color systems and their inter-relation,” Illum. Eng. 36, 336 (1941).

D. B. Judd, “Whiteness of light surface-colors,” J. Opt. Soc. Am. 31, 462 (1941).

F. Scofield, D. B. Judd, and R. S. Hunter, “A proposed method of designating color,” A.S.T.M. Bulletin No. 110, p. 19 (May, 1941).

1940 (4)

D. B. Judd, “Hue, saturation, and lightness of surface colors with chromatic illumination,” J. Research Nat. Bur. Stand. 24, 293 (1940) RP1285, andJ. Opt. Soc. Am. 30, 2 (1940).
[CrossRef]

R. S. Hunter, “Further progress in developing a photoelectric method for measuring color difference,” Bull. Am. Ceramic Soc. 19, 133 (1940).

R. S. Hunter, “A multipurpose photoelectric reflectometer,” J. Research, Nat. Bur. Stand. 25, 581 (1940) RP1345;also [18a]J. Opt. Soc. Am. 30, 536 (1940).
[CrossRef]

S. M. Newhall, “Preliminary report of the O.S.A. Subcommittee on the spacing of the Munsell colors,” J. Opt. Soc. Am. 30, 617 (1940).
[CrossRef]

1939 (7)

B. T. Barnes, “A four-filter photoelectric colorimeter,” J. Opt. Soc. Am. 29, 448 (1939).
[CrossRef]

F. C. Breckenridge and W. R. Schaub, “Rectangular uniform-chromaticity-scale coordinates,” J. Opt. Soc. Am. 29, 370 (1939).
[CrossRef]

I. A. Balinkin, “Industrial color tolerances,” Am J. Psychol. 52, 428 (1939).
[CrossRef]

R. S. Hunter, “Progress in developing a photoelectric method for measuring color difference,” Bull. Am. Ceramic Soc. 18, 121 (1939).

F. W. Sears, “An improved calculator for obtaining tristimulus values from spectrophotometric curves,” J. Opt. Soc. Am. 29, 77 (1939).
[CrossRef]

D. B. Judd, “Specification of color tolerances at the National Bureau of Standards,” Am. J. Psychol. 52, 418 (1939).
[CrossRef]

D. B. Judd, “Specification of uniform color tolerances for textiles,” Textile Research 9, 253, 292 (1939).
[CrossRef]

1938 (3)

A. Dresler and H. G. Frühling, “Uber ein photoelektrisches Dreifarbenmessgerät,” Das Licht 8, 238 (1938).

J. W. Perry, “The objective measurement of color,” J. Sci. Inst. 15, 270 (1938).
[CrossRef]

K. S. Gibson and H. J. Keegan, “On the magnitude of the error resulting from fluorescence in spectrophotometric measurements,” J. Opt. Soc. Am. 28, 180 (1938).

1937 (5)

Institute of Paper Chemistry, Instrumentation studies, XX, A study of photoelectric instruments for the measurements of color, reflectance, and transmittance, Paper Trade J. 105, TS293 (1937).

Institute of Paper Chemistry, Instrumentation studies XIII Adaptability of the G. E. reflection meter as a color analyzer, Paper Trade J. 104, TS245 (1937).

G. T. Winch and E. H. Palmer, “A direct reading photoelectric trichromatic colorimeter,” Trans. Illum. Eng. Soc. London 2, 137 (1937).

L. A. Jones, “Colorimetry; preliminary draft of a report on nomenclature and definitions,” J. Opt. Soc. Am. 27, 207 (1937).
[CrossRef]

J. A. Van den Akker, “Chromaticity limitations of the best physically realizable three-filter photoelectric colorimeter,” J. Opt. Soc. Am. 27, 401 (1937).
[CrossRef]

1936 (4)

R. S. Estey, “The selection of color temperature altering filters,” J. Opt. Soc. Am. 26, 293 (1936).
[CrossRef]

General Electric Company, The G. E. light-sensitive cell, Catalog GEA-2467 (1936);see also R. H. Mighell, “The light-sensitive cell,” Gen. Elec. Rev. 40, 372 (1937).

K. S. Gibson, “Photoelectric photometers and colorimeters,” Instruments 9, 309 and 335 (1936);see also Nat. Bur. Stand. Letter Circular LC545, “Photoelectric colorimeters” (March8, 1939).

D. B. Judd, “A method for determining whiteness of paper, II, Paper Trade J. 103, TS154 (1936);also Tech. Assoc. Papers, Series 19, 359 (1936).

1935 (2)

D. B. Judd, “A Maxwell triangle yielding uniform chromaticity scales,” J. Research Nat. Bur. Stand. 14, 41 (1935), RP756;also J. Opt. Soc. Am. 25, 24 (1935).
[CrossRef]

D. L. MacAdam, “Maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 361 (1935).
[CrossRef]

1934 (1)

J. Guild, “The instrumental side of colorimetry,” J. Sci. Inst. 11, 69 (1934).
[CrossRef]

1933 (2)

1931 (2)

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. London 33, 74 (1931).
[CrossRef]

J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. Roy. Soc. A230, 149 (1931).

1930 (1)

S. Werthan, A. C. Elm, and R. H. Wien, “Yellowing of interior gloss paints and enamels,” Ind. Eng. Chem. 22, 772 (1930).
[CrossRef]

1929 (1)

J. F. Skogland, “Tables of spectral energy distribution and luminosity for use in computing light transmissions and relative brightnesses from spectrophotometric data,” Bur. Stand. Misc. Pub. No. 86 (1929); M86.

1924 (1)

1915 (1)

H. E. Ives, “A precision artificial eye,” Phys. Rev. 6, 334 (1915).
[CrossRef]

Balinkin, I. A.

I. A. Balinkin, “Industrial color tolerances,” Am J. Psychol. 52, 428 (1939).
[CrossRef]

Barnes, B. T.

Breckenridge, F. C.

Dresler, A.

A. Dresler and H. G. Frühling, “Uber ein photoelektrisches Dreifarbenmessgerät,” Das Licht 8, 238 (1938).

Elm, A. C.

S. Werthan, A. C. Elm, and R. H. Wien, “Yellowing of interior gloss paints and enamels,” Ind. Eng. Chem. 22, 772 (1930).
[CrossRef]

Estey, R. S.

Frühling, H. G.

A. Dresler and H. G. Frühling, “Uber ein photoelektrisches Dreifarbenmessgerät,” Das Licht 8, 238 (1938).

Gage, H. P.

Gibson, K. S.

K. S. Gibson and H. J. Keegan, “On the magnitude of the error resulting from fluorescence in spectrophotometric measurements,” J. Opt. Soc. Am. 28, 180 (1938).

K. S. Gibson, “Photoelectric photometers and colorimeters,” Instruments 9, 309 and 335 (1936);see also Nat. Bur. Stand. Letter Circular LC545, “Photoelectric colorimeters” (March8, 1939).

Guild, J.

J. Guild, “The instrumental side of colorimetry,” J. Sci. Inst. 11, 69 (1934).
[CrossRef]

J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. Roy. Soc. A230, 149 (1931).

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. London 33, 74 (1931).
[CrossRef]

Hardy, A. C.

A. C. Hardy, Handbook of ColorimetryThe Technology Press (Cambridge, 1936).

Hunter, R. S.

F. Scofield, D. B. Judd, and R. S. Hunter, “A proposed method of designating color,” A.S.T.M. Bulletin No. 110, p. 19 (May, 1941).

R. S. Hunter, “A multipurpose photoelectric reflectometer,” J. Research, Nat. Bur. Stand. 25, 581 (1940) RP1345;also [18a]J. Opt. Soc. Am. 30, 536 (1940).
[CrossRef]

R. S. Hunter, “Further progress in developing a photoelectric method for measuring color difference,” Bull. Am. Ceramic Soc. 19, 133 (1940).

R. S. Hunter, “Progress in developing a photoelectric method for measuring color difference,” Bull. Am. Ceramic Soc. 18, 121 (1939).

R. S. Hunter, “Photoelectric tristimulus colorimetry,” part of Symposium on Color, published by the A.S.T.M., Philadelphia, Pennsylvania (1941).

Ives, H. E.

H. E. Ives, “A precision artificial eye,” Phys. Rev. 6, 334 (1915).
[CrossRef]

Jones, L. A.

Judd, D. B.

D. B. Judd, “Whiteness of light surface-colors,” J. Opt. Soc. Am. 31, 462 (1941).

D. B. Judd, “Color systems and their inter-relation,” Illum. Eng. 36, 336 (1941).

F. Scofield, D. B. Judd, and R. S. Hunter, “A proposed method of designating color,” A.S.T.M. Bulletin No. 110, p. 19 (May, 1941).

D. B. Judd, “Hue, saturation, and lightness of surface colors with chromatic illumination,” J. Research Nat. Bur. Stand. 24, 293 (1940) RP1285, andJ. Opt. Soc. Am. 30, 2 (1940).
[CrossRef]

D. B. Judd, “Specification of color tolerances at the National Bureau of Standards,” Am. J. Psychol. 52, 418 (1939).
[CrossRef]

D. B. Judd, “Specification of uniform color tolerances for textiles,” Textile Research 9, 253, 292 (1939).
[CrossRef]

D. B. Judd, “A method for determining whiteness of paper, II, Paper Trade J. 103, TS154 (1936);also Tech. Assoc. Papers, Series 19, 359 (1936).

D. B. Judd, “A Maxwell triangle yielding uniform chromaticity scales,” J. Research Nat. Bur. Stand. 14, 41 (1935), RP756;also J. Opt. Soc. Am. 25, 24 (1935).
[CrossRef]

D. B. Judd, The 1931 I.C.I. standard observer and coordinate system for colorimetry, J. Opt. Soc. Am. 23, 359 (1933).
[CrossRef]

D. B. Judd, “Introduction to Color,” part of Symposium on Color, published by the A.S.T.M., Philadelphia, Pennsylvania (1941).

Keegan, H. J.

K. S. Gibson and H. J. Keegan, “On the magnitude of the error resulting from fluorescence in spectrophotometric measurements,” J. Opt. Soc. Am. 28, 180 (1938).

MacAdam, D. L.

Newhall, S. M.

Nickerson, D.

D. Nickerson, “Use of I.C.I. tristimulus values in disk colorimetry,” U. S. Department of Agriculture, Bureau of Agricultural Economics, Washington, D. C. (May, 1938).

Ostwald, W.

W. Ostwald, Colour Science; Part II, Colour Measurement and Colour Harmony (English trans.) p. 35, Winsor and Newton (London, 1933).

Palmer, E. H.

G. T. Winch and E. H. Palmer, “A direct reading photoelectric trichromatic colorimeter,” Trans. Illum. Eng. Soc. London 2, 137 (1937).

Perry, J.

F. Twyman and J. Perry, “Improvements in or relating to colorimeters,” British Patent Spec. No. 324, 351, (Jan.20, 1930);Application dated Aug. 18, 1928.

Perry, J. W.

J. W. Perry, “The objective measurement of color,” J. Sci. Inst. 15, 270 (1938).
[CrossRef]

Priest, I. G.

Schaub, W. R.

Scofield, F.

F. Scofield, D. B. Judd, and R. S. Hunter, “A proposed method of designating color,” A.S.T.M. Bulletin No. 110, p. 19 (May, 1941).

Sears, F. W.

Skogland, J. F.

J. F. Skogland, “Tables of spectral energy distribution and luminosity for use in computing light transmissions and relative brightnesses from spectrophotometric data,” Bur. Stand. Misc. Pub. No. 86 (1929); M86.

Smith, T.

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. London 33, 74 (1931).
[CrossRef]

Twyman, F.

F. Twyman and J. Perry, “Improvements in or relating to colorimeters,” British Patent Spec. No. 324, 351, (Jan.20, 1930);Application dated Aug. 18, 1928.

Van den Akker, J. A.

VanHeuckeroth, A. W.

A. W. VanHeuckeroth, “Effect of several factors upon the yellowing of some protective coatings,” Sci. Sec. Cir. No. 407 of the Nat. Paint, Varnish, and Lacquer Assn., Washington, D. C. (1932).

Werthan, S.

S. Werthan, A. C. Elm, and R. H. Wien, “Yellowing of interior gloss paints and enamels,” Ind. Eng. Chem. 22, 772 (1930).
[CrossRef]

Wien, R. H.

S. Werthan, A. C. Elm, and R. H. Wien, “Yellowing of interior gloss paints and enamels,” Ind. Eng. Chem. 22, 772 (1930).
[CrossRef]

Winch, G. T.

G. T. Winch and E. H. Palmer, “A direct reading photoelectric trichromatic colorimeter,” Trans. Illum. Eng. Soc. London 2, 137 (1937).

Wright, W. D.

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141 (1928–29);“A re-determination of the trichromatic mixture data,” Medical Research Council, Reports of the Committee upon the Physiology of Vision, VII, Special Report Series No. 139, London, 1929.
[CrossRef]

A.S.T.M. Bulletin No. 110 (1)

F. Scofield, D. B. Judd, and R. S. Hunter, “A proposed method of designating color,” A.S.T.M. Bulletin No. 110, p. 19 (May, 1941).

Am J. Psychol. (1)

I. A. Balinkin, “Industrial color tolerances,” Am J. Psychol. 52, 428 (1939).
[CrossRef]

Am. J. Psychol. (1)

D. B. Judd, “Specification of color tolerances at the National Bureau of Standards,” Am. J. Psychol. 52, 418 (1939).
[CrossRef]

Bull. Am. Ceramic Soc. (2)

R. S. Hunter, “Progress in developing a photoelectric method for measuring color difference,” Bull. Am. Ceramic Soc. 18, 121 (1939).

R. S. Hunter, “Further progress in developing a photoelectric method for measuring color difference,” Bull. Am. Ceramic Soc. 19, 133 (1940).

Bur. Stand. Misc. Pub. No. 86 (1)

J. F. Skogland, “Tables of spectral energy distribution and luminosity for use in computing light transmissions and relative brightnesses from spectrophotometric data,” Bur. Stand. Misc. Pub. No. 86 (1929); M86.

Catalog GEA-2467 (1)

General Electric Company, The G. E. light-sensitive cell, Catalog GEA-2467 (1936);see also R. H. Mighell, “The light-sensitive cell,” Gen. Elec. Rev. 40, 372 (1937).

Das Licht (1)

A. Dresler and H. G. Frühling, “Uber ein photoelektrisches Dreifarbenmessgerät,” Das Licht 8, 238 (1938).

Illum. Eng. (1)

D. B. Judd, “Color systems and their inter-relation,” Illum. Eng. 36, 336 (1941).

Ind. Eng. Chem. (1)

S. Werthan, A. C. Elm, and R. H. Wien, “Yellowing of interior gloss paints and enamels,” Ind. Eng. Chem. 22, 772 (1930).
[CrossRef]

Instruments (1)

K. S. Gibson, “Photoelectric photometers and colorimeters,” Instruments 9, 309 and 335 (1936);see also Nat. Bur. Stand. Letter Circular LC545, “Photoelectric colorimeters” (March8, 1939).

J. Opt. Soc. Am. (13)

K. S. Gibson and H. J. Keegan, “On the magnitude of the error resulting from fluorescence in spectrophotometric measurements,” J. Opt. Soc. Am. 28, 180 (1938).

D. B. Judd, “Whiteness of light surface-colors,” J. Opt. Soc. Am. 31, 462 (1941).

I. G. Priest, “Apparatus for the determination of color in terms of dominant wave-length, purity, and brightness,” J. Opt. Soc. Am. 8, 173 (1924).
[CrossRef]

H. P. Gage, “Color filters for altering color temperature. Pyrometer absorption and daylight glasses,” J. Opt. Soc. Am. 23, 46 (1933).
[CrossRef]

D. B. Judd, The 1931 I.C.I. standard observer and coordinate system for colorimetry, J. Opt. Soc. Am. 23, 359 (1933).
[CrossRef]

D. L. MacAdam, “Maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 361 (1935).
[CrossRef]

R. S. Estey, “The selection of color temperature altering filters,” J. Opt. Soc. Am. 26, 293 (1936).
[CrossRef]

L. A. Jones, “Colorimetry; preliminary draft of a report on nomenclature and definitions,” J. Opt. Soc. Am. 27, 207 (1937).
[CrossRef]

J. A. Van den Akker, “Chromaticity limitations of the best physically realizable three-filter photoelectric colorimeter,” J. Opt. Soc. Am. 27, 401 (1937).
[CrossRef]

F. W. Sears, “An improved calculator for obtaining tristimulus values from spectrophotometric curves,” J. Opt. Soc. Am. 29, 77 (1939).
[CrossRef]

S. M. Newhall, “Preliminary report of the O.S.A. Subcommittee on the spacing of the Munsell colors,” J. Opt. Soc. Am. 30, 617 (1940).
[CrossRef]

B. T. Barnes, “A four-filter photoelectric colorimeter,” J. Opt. Soc. Am. 29, 448 (1939).
[CrossRef]

F. C. Breckenridge and W. R. Schaub, “Rectangular uniform-chromaticity-scale coordinates,” J. Opt. Soc. Am. 29, 370 (1939).
[CrossRef]

J. Research Nat. Bur. Stand. (2)

D. B. Judd, “A Maxwell triangle yielding uniform chromaticity scales,” J. Research Nat. Bur. Stand. 14, 41 (1935), RP756;also J. Opt. Soc. Am. 25, 24 (1935).
[CrossRef]

D. B. Judd, “Hue, saturation, and lightness of surface colors with chromatic illumination,” J. Research Nat. Bur. Stand. 24, 293 (1940) RP1285, andJ. Opt. Soc. Am. 30, 2 (1940).
[CrossRef]

J. Research, Nat. Bur. Stand. (1)

R. S. Hunter, “A multipurpose photoelectric reflectometer,” J. Research, Nat. Bur. Stand. 25, 581 (1940) RP1345;also [18a]J. Opt. Soc. Am. 30, 536 (1940).
[CrossRef]

J. Sci. Inst. (2)

J. Guild, “The instrumental side of colorimetry,” J. Sci. Inst. 11, 69 (1934).
[CrossRef]

J. W. Perry, “The objective measurement of color,” J. Sci. Inst. 15, 270 (1938).
[CrossRef]

Paper Trade J. (3)

D. B. Judd, “A method for determining whiteness of paper, II, Paper Trade J. 103, TS154 (1936);also Tech. Assoc. Papers, Series 19, 359 (1936).

Institute of Paper Chemistry, Instrumentation studies, XX, A study of photoelectric instruments for the measurements of color, reflectance, and transmittance, Paper Trade J. 105, TS293 (1937).

Institute of Paper Chemistry, Instrumentation studies XIII Adaptability of the G. E. reflection meter as a color analyzer, Paper Trade J. 104, TS245 (1937).

Phil. Trans. Roy. Soc. (1)

J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. Roy. Soc. A230, 149 (1931).

Phys. Rev. (1)

H. E. Ives, “A precision artificial eye,” Phys. Rev. 6, 334 (1915).
[CrossRef]

Textile Research (1)

D. B. Judd, “Specification of uniform color tolerances for textiles,” Textile Research 9, 253, 292 (1939).
[CrossRef]

Trans. Illum. Eng. Soc. London (1)

G. T. Winch and E. H. Palmer, “A direct reading photoelectric trichromatic colorimeter,” Trans. Illum. Eng. Soc. London 2, 137 (1937).

Trans. Opt. Soc. (1)

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141 (1928–29);“A re-determination of the trichromatic mixture data,” Medical Research Council, Reports of the Committee upon the Physiology of Vision, VII, Special Report Series No. 139, London, 1929.
[CrossRef]

Trans. Opt. Soc. London (1)

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. London 33, 74 (1931).
[CrossRef]

Other (13)

F. Twyman and J. Perry, “Improvements in or relating to colorimeters,” British Patent Spec. No. 324, 351, (Jan.20, 1930);Application dated Aug. 18, 1928.

A. W. VanHeuckeroth, “Effect of several factors upon the yellowing of some protective coatings,” Sci. Sec. Cir. No. 407 of the Nat. Paint, Varnish, and Lacquer Assn., Washington, D. C. (1932).

National Bureau of Standards, , “Preparation and colorimetric properties of a magnesium oxide reflectance standard” (1939).

National Bureau of Standards, Commercial Standards CS62–38, “Colors for kitchen accessories,” andCS63–38, “Colors for bathroom accessories” (1937).

D. B. Judd, “Introduction to Color,” part of Symposium on Color, published by the A.S.T.M., Philadelphia, Pennsylvania (1941).

D. Nickerson, “Use of I.C.I. tristimulus values in disk colorimetry,” U. S. Department of Agriculture, Bureau of Agricultural Economics, Washington, D. C. (May, 1938).

W. Ostwald, Colour Science; Part II, Colour Measurement and Colour Harmony (English trans.) p. 35, Winsor and Newton (London, 1933).

Federal Standard Stock Catalog, Procurement Division, Washington, D. C., Federal Specification TT-P-53 for paint; outside, ready-mixed, medium-chrome-yellow (Feb.12, 1937).

Federal Standard Stock Catalog, Procurement Division, Washington, D. C., Federal Specification TT-P-59 for paint; ready-mixed, international-orange (June17, 1937).

Federal Standard Stock Catalog, Procurement Division, Washington, D. C., Federal Specification TT-P-23a for paint; cold-water, interior, light-tints and white (March22, 1940).

International Commission on Illumination, Proceedings of the 8th Session, Commission Internationale de l’Éclairage, Cambridge, pp. 19–29 (Sept. 1931);see also reference [25].

A. C. Hardy, Handbook of ColorimetryThe Technology Press (Cambridge, 1936).

R. S. Hunter, “Photoelectric tristimulus colorimetry,” part of Symposium on Color, published by the A.S.T.M., Philadelphia, Pennsylvania (1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

F. 1
F. 1

The I.C.I. observer, represented by the curves, x ¯ E C, y ¯ E C and z ¯ E C, compared to its approximate duplication by the source-filter photo-cell combinations used in the multipurpose reflectometer.

F. 2
F. 2

I.C.I. (x, y) diagram and corresponding photoelectric approximation to the diagram with the point for white (MgO) common to both diagrams. The pairs of points for the eleven chromatic porcelain-enameled plaques show the errors in chromaticity measured by the photoelectric tristimulus method. The small rectangle near the center gives boundaries shown in Fig. 7.

F. 3
F. 3

(α, β)-uniform-chromaticness-scale diagram for surface colors showing the spectrum locus and points representing ten Munsell colors of 4-value and 6-chroma [38] medium chrome yellow, international orange, and toluidine red.

F. 4
F. 4

The gloss factor fg plotted as a function of Y for Kg = 0.025.

F. 5
F. 5

Diagram of the (α′, β′, L′) surface-color solid showing the chromaticity plane for Y = 0.20.

F. 6
F. 6

Spectral curves of four pairs of specimens used for the study of amounts of error resulting from failure of the source-filter photo-cell combinations to be spectrally equivalent to the I.C.I. standard observer. Upper two pairs—curves representing essentially non-metameric differences; lower two pairs—curves representing differences in which there is appreciable metamerism.

F. 7
F. 7

Part of (x, y) diagram (outlined by rectangle in Fig. 2) showing x and y of a number of white porcelain-enamel plaques measured both with the visual subtractive colorimeter [29] and with the multipurpose reflectometer [18].

F. 8
F. 8

Relative spectral responses of G. E. cells No. 55 and No. 2 used to demonstrate change in measured chromaticity which may result from change of the photocell in the instrument.

F. 9
F. 9

Error in photoelectrically measured chromaticity due to fluorescence of the resin specimen R. When compared in the subtractive colorimeter [29] with Munsell paper RYR 5/6, the resin is properly assigned the chromaticity represented by the black dot, rather than the erroneous chromaticity assigned by the multipurpose reflectometer [18] and represented by the open circle.

F. 10
F. 10

Part of the (x, y) diagram showing chromaticities acceptable and chromaticities not acceptable according to Federal Specification TT-P-23a for white casein paints. The plotted points show values obtained with actual samples.

F. 11
F. 11

Part of the (α, β) diagram used to show the changes of chromaticity of a pink-colored paint with exposure outdoors and in two machines designed to accelerate the changes produced in weathering.

Tables (16)

Tables Icon

Table I Tabular arrangement of some of the terms used to describe the color of a surface.

Tables Icon

Table II Spectral character of the individual components and of the source-filter photo-cell combinations used for photoelectric tristimulus colorimetry with the multipurpose reflectometer [18].

Tables Icon

Table III The uses of photoelectric tristimulus measurements.

Tables Icon

Table IV Values of α and β, computed according to Eqs. (7), of spectrum colors at 10-millimicron intervals.

Tables Icon

Table V Values of k1, the proximity factor, suggested by Judd [28, p. 425].

Tables Icon

Table VI Amounts of change in chromaticity and color difference introduced by changes in instrument settings of 0.001.

Tables Icon

Table VII Errors in measured chromaticity differences which result from substitution of photoelectric tristimulus combinations for the I.C.I. standard observer.

Tables Icon

Table VIII Changes in measured chromaticity difference which would result from the substitution of one photo-cell for another of the same type, but of different spectral response.

Tables Icon

Table IX Percentage errors in computed values of color difference from using the suggested short-cuts.

Tables Icon

Table X Advantages and disadvantages of photoelectric tristimulus colorimetry.

Tables Icon

Example 1 Measurement of the I.C.I. values, x, y, z, and Y of four white painted plaques (see Eqs. (5) and (6), and Fig. 10).Purpose—To test samples for compliance with color requirements given in Federal Specification TT-P-23a, [8] namely: xyzYMinimum——0.3550.85Maximum0.3240.331——Computational short-cut—Scale corrections omitted.Working standard—Vitrolite No. 1 (A =0.906, G = 0.909, B = 0.890)

Tables Icon

Example 2 Measurement of the change of α and β of three painted plaques with exposure (see Eqs. (8) and Fig. 11).Purpose—To follow the chromaticity changes of panels of the same paint exposed out of doors and in two machines which accelerate the changes produced by weathering.Note—Only one of the many sets of computations used to obtain values of α and β is reproduced below. Computational short-cut—Scale corrections omitted. Working standard—Pink plaque (A = 0.7058, G = 0.606, B = 0.4714).

Tables Icon

Example 3 Measurement of the amount of color difference ΔE between a standard and each of four similarly colored brown automobile pile fabrics (see Eq. (13)).Purpose—To find which fabrics comply with the requirement that they differ from the standard by no more than one N.B.S. unit of color difference.Computational short-cut—No calibrated standard used. kl = 100, fg = 1.00.

Tables Icon

Example 4 Measurement of the hue-difference estimate, ΔH′, the saturation-difference estimate, ΔS′, and the lightness-difference estimate, ΔL′, between an actual earth sample and two modified earths (see Eqs. (17)).Purpose—To find how the modified earths differ in color from the actual earth.Computational short-cuts—Scale corrections omitted, no calibrated standard used, and the factor 0.5 used instead of the actual transmissions of the neutral filter.ki = 100, fg = 1.00.

Tables Icon

Example 5 Measurement of the whiteness W of one new and two laundered sheeting specimens (see Eq. (19)). Purpose—To measure the effect of repeated laundering on the whiteness of new sheeting material.Computational short-cut—Scale corrections omitted.kl, = 20,fg = 1.00.Working standard—Vitrolite No. 1 (A = 0.906, G = 0.909, B = 0.890).

Tables Icon

Example 6 Measurement of the yellowness of four near-white porcelain-enamel specimens (Eq. (20)).Purpose—To find which of several enamel specimens are yellowish (+ values) and which are bluish (− values).Computational short-cut—Scale corrections omitted.Working standard—Vitrolite No. 1 (A = 0.906, G = 0.909, B = 0.890).

Equations (72)

Equations on this page are rendered with MathJax. Learn more.

E I T 1 s K 1 = x ¯ E υ , E I T 2 s K 2 = y ¯ E υ , E I T 3 s K 3 = z ¯ E υ .
0.80 E I T A s k A + 0.18 E I T B s k B , 1.00 E I T G s k G , and 1.18 E I T B s k B ,
x ¯ E C 0.18 E I T A s k A + 0.18 E I T B s k B , y ¯ E C 1.00 E I T G s k G , z ¯ E C 1.18 E I T B s k B .
X λ = 0 λ = A λ ( θ i , θ υ ) E C x ¯ Δ λ , Y λ = 0 λ = A λ ( θ i , θ υ ) E C y ¯ Δ λ , Z λ = 0 λ = A λ ( θ i , θ υ ) E C z ¯ Δ λ .
λ = 0 λ = A λ ( θ i , θ υ ) E I T A s k A Δ λ A , λ = 0 λ = A λ ( θ i , θ υ ) E I T G s k G Δ λ G , λ = 0 λ = A λ ( θ i , θ υ ) E I T B s k B Δ λ B .
X 0.80 A + 0.18 B , Y 1.00 G , Z 1.18 B .
x X / ( X + Y + Z ) and y Y / ( X + Y + Z ) .
α 2.4266 x 1.3631 y 0.3214 1.0000 x + 2.2633 y + 1.1054 , β 0.5710 x + 1.2447 y 0.5708 1.0000 x + 2.2633 y + 1.1054 .
α A G A + 2 G + B , β 0.4 ( G B ) A + 2 G + B .
α 2.5 ( A G ) / 10 G , β ( G B ) / 10 G .
Δ E [ ( Δ E C ) 2 + ( Δ E Y ) 2 ] 1 2 .
Δ E Y = k 1 Δ ( Y 1 2 ) ,
Δ E C = k 2 Y 1 4 Δ S ,
Δ E C = 1.16 k 2 Y 1 4 [ ( Δ α ) 2 + ( Δ β ) 2 ] 1 2 .
Δ E = f g { [ 7 Y 1 4 [ ( Δ α ) 2 + ( Δ β ) 2 ] 1 2 · 10 2 ] 2 + [ k 1 Δ ( Y 1 2 ) ] 2 } 1 2 .
f g = Y / ( Y + K g ) ,
α = 700 Y 1 4 α , β = 700 Y 1 4 β L = k 1 Y 1 2 .
Δ E = [ ( Δ α ) 2 + ( Δ β ) 2 + ( Δ L ) 2 ] 1 2 ,
ϕ angle whose tangent is β / α , S ( ( α 2 + β 2 ) Y 1 2 ) 1 2 , L Y 1 2 .
S ( α 2 + β 2 ) 1 2 .
Δ H S 1 + S 2 2 Δ ϕ .
Δ H = 12.2 Y 1 4 ( α 2 + β 2 ) 1 2 · Δ ϕ where Δ ϕ is measured in degrees , Δ S = 700 Y 1 4 Δ ( ( α 2 + β 2 ) 1 2 ) , Δ L = k 1 Δ ( Y 1 2 ) ,
W 1 Δ E MgO to specimen Δ E MgO to black ,
W = 1 1 20 Δ E MgO to specimen .
W = 1 { [ 30 ( α 2 + β 2 ) 1 2 ] 2 + [ ( 1.00 Y ) 2 ] 2 } 1 2 .
Yellowness = ( A B ) / G ,
A std = Y y ( 1.25 x 0.1907 z ) , G std = Y , B std = Y y 0.8475 z .
x = 0.3585 , y = 0.3345 , z = 0.3070 , Y = 0.606 .
Y / y = 1.81166 , 1.25 x = 0.448125 0.1907 z = 0.058545 _ Dif . = 0.389580 , A = Dif . ( Y / y ) = 0.7058 , G = Y = 0.606 , 0.8475 z = 0.260182 , B = 0.8475 z ( Y / y ) = 0.4714 .
A = Y ( 1.0 + 3.0 α + 2.5 β 1.0 α + 2.5 β ) , G = Y , B = Y ( 1.0 α 7.5 β 1.0 α + 2.5 β ) .
Δ E = 0.3 ,
[ ( Δ α ) 2 + ( Δ β ) 2 ] 1 2 = 0.0005 .
A std , G std , B std , A 1 , G 1 , B 1 , A 2 , G 2 , B 2 ,
k a A std , k g G std , k b B std , k a A 1 , k g G 1 , k b B 1 , k a A 2 , k g G 2 , k b B 2 .
x std ( u ) = 0.80 k a A std + 0.18 k b B std 0.80 k a A std + k g G std + 1.36 k b B std ,
x std = 0.80 A std + 0.18 B std 0.80 A std + G std + 1.36 B std .
B = Mean × 0.890 0.8970
A = Mean × 0.906 0.9042
Y G = Mean × 0.909 0.9085
x 0.80 A + 0.18 B Denom
B = Setting × 0.4714 0.5002
A = Setting × 0.7058 0.704
G = Setting × 0.606 0.6195
[ ( Δ α ) 2 + ( Δ β ) 2 · 10 2 ] 1 2
Y 1 2
7 ( Y 1 4 )
Δ C = 7 ( Y 1 4 ) [ ( Δ α ) 2 + ( Δ β ) 2 · 10 2 ] 1 2
Δ Y 1 2
Δ L = k l ( Δ Y 1 2 )
Δ E / f g = [ ( Δ C ) 2 + ( Δ L ) 2 ] 1 2
L = Y 1 2 G 1 2
Δ L = k l Δ ( Y 1 2 )
( α 2 + β 2 ) 1 2
Δ ( α 2 + β 2 ) 1 2
700 Y 1 4
Δ S = 700 Y 1 4 Δ ( α 2 + β 2 ) 1 2
12.2 Y 1 4
12.2 Y 1 4 ( α 2 + β 2 ) 1 2
Δ H = 12.2 1 4 ( α 2 + β 2 ) 1 2 · Δ ϕ
Δ E = [ ( Δ L ) 2 + ( Δ S ) 2 + ( Δ H ) 2 ] 1 2
B = Mean × 0.890 0.895
A = Mean × 0.906 0.9072
G = Mean × 0.909 0.9042
( α 2 + β 2 ) 1 2
W C = 30 ( α 2 + β 2 ) 1 2
( W C 2 + W L 2 ) 1 2
B = Mean × 0.890 0.8938
A = Mean × 0.906 0.8940
G = Mean × 0.909 0.9034
x = 0.5583 α + 0.1631 β + 0.2466 0.0100 α 1.4347 β + 0.7951 , y = 0.2515 α + 0.6285 β + 0.2515 0.0100 α 1.4347 β + 0.7951 .
α 2 A 2 G 2 A + 5 G + 3 B , β G B 2 A + 5 G + 3 B ,
α 2.5 ( A G ) A + 6 G + 3 B , β G B A + 6 G + 3 B .