Abstract

An apparatus is described which facilitates the presentation of pairs of variable colors without variation of luminance. With this instrument, various criteria of visual sensitivity to color difference have been investigated. The standard deviation of color matching was finally adopted as the most reproducible criterion. The test field was two degrees in diameter, divided by a vertical biprism edge, and was viewed centrally with a surrounding field of forty-two degrees diameter uniformly illuminated so as to have a chromaticity similar to that of the I.C.I. Standard Illuminant C (average daylight). The luminance of the test field was maintained constant at 15 millilamberts, and the surrounding field was 7.5 millilamberts. These fields were viewed monocularly through an artificial pupil, 2.6 mm in diameter. Over twenty-five thousand trials at color matching have been recorded for a single observer, and the readings are analyzed in detail and compared with previously available data. The standard deviations of the trials are represented in terms of distance in the standard 1931 I.C.I. chromaticity diagram. These increments of distance are represented as functions of position alongstraight lines in the chromaticity diagram, and also as functions of direction of departure from points representing certain standard chromaticities. Such representations are simpler than the traditional representations of wave-length thresholds and purity thresholds as functions of wave-length, and the accuracy of the representations is improved by this simplicity. Chromaticity discrimination for non-spectral colors is represented simultaneously and on the same basis as for spectral colors. Small, equally noticeable chromaticity differences are represented for all chromaticities and for all kinds of variations by the lengths of the radii of a family of ellipses drawn on the standard chromaticity diagram. These ellipses cannot be transformed into equal-sized circles by any projective transformation of the standard chromaticity diagram. The consistency of these data with the results of other investigators is exhibited in terms of the noticeabilities of wave-length differences in the spectrum and of the noticeabilities of purity differences from a neutral stimulus, as functions of dominant wave-length.

© 1942 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Use of a Monochromatic Colorimeter for the Study of Color Blindness

J. A. Van den Akker, J. Edward Todd, Philip Nolan, and Willmer A. Wink
J. Opt. Soc. Am. 37(5) 363-387 (1947)

The Effect of Field Size and Chromatic Surroundings on Color Discrimination*

W. R. J. Brown
J. Opt. Soc. Am. 42(11) 837-844 (1952)

Specification of Small Chromaticity Differences*†

David L. MacAdam
J. Opt. Soc. Am. 33(1) 18-26 (1943)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Hardy and collaborators, Handbook of Colorimetry (Technology Press, Cambridge, Massachusetts, 1936).
  2. L. A. Jones, “Colorimetry: Preliminary draft of a report on nomenclature and definitions,” J. Opt. Soc. Am. 27, 207–213 (1937).
    [Crossref]
  3. D. B. Judd, “A Maxwell triangle yielding uniform chromaticity scales,” J. Opt. Soc. Am. 25, 24–35 (1935).
    [Crossref]
  4. I. G. Priest and F. G. Brickwedde, “Minimum perceptible colorimetric purity as a function of dominant wave-length,” J. Opt. Soc. Am. 28, 133–139 (1938).
    [Crossref]
  5. W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. 53, 93–112 (1941).
    [Crossref]
  6. D. L. MacAdam, “The theory of the maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 249–252 (1935).
    [Crossref]
  7. D. L. MacAdam, “Projective transformations of I.C.I. color specifications,” J. Opt. Soc. Am. 27, 294–299 (1937).
    [Crossref]
  8. K. S. Gibson and E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Nat. Bur. Standards 19, 131–191 (1924);Trans. Ilium. Eng. Soc. 19, 176–196 (1924).
    [Crossref]
  9. Proceedings of the Sixth Session, International Commission on Illumination (Geneva, 1924), pp. 67 and 232.
  10. A. König and C. Dieterici, “Über die Empfindlichkeit des normalen Auges für Wellenlangenunterschiede des Lichtes,” Wied. Ann. d. Physik und Chemie 22, 579–589 (1884);Graefes Archiv. 30 (2), 158 (1884);Gesammelte Abhandlungen zur Physiologischen Oplik (Leipzig, 1903), p. 23.
    [Crossref]
  11. D. L. MacAdam, “Noticeability of color differences in daylight,” J. Opt. Soc. Am. 30, 657A (1940).
  12. W. D. Wright and F. H. G. Pitt, “Hue discrimination in normal colour-vision,” Proc.Phys.Soc. 46, 459–468 (1934).
  13. O. Steindler, “Die Farbenempfindlichkeit des normalen und farbenblinden Auges,” Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 2a,  115, 39 (1906).
  14. L. A. Jones, “The fundamental scale for pure hue and retinal sensibility to hue differences,” J. Opt. Soc. Am. 1, 63–77 (1917).
    [Crossref]
  15. H. Laurens and W. F. Hamilton, “The sensibility of the eye to differences in wave-length,” Am. J. Physiol. 65, 547 (1923).
  16. E. P. T. Tyndall, “Chromaticity sensibility to wave-length difference as a function of purity,” J. Opt. Soc. Am. 23, 15–24 (1933).
    [Crossref]
  17. D. L. MacAdam, “Photometric relationships between complementary colors,” J. Opt. Soc. Am. 28, 103–111 (1938).
    [Crossref]
  18. L. C. Martin, F. L. Warburton, and W. J. Morgan, “Determination of the sensitiveness of the eye to differences in the saturation of colours,” Med. Research Council, (H. M. Stationery Office, London, 1933).
  19. W. D. Wright and F. H. G. Pitt, “The saturation discrimination of two trichromats,” Proc. Phys. Soc. 49, 329–331 (1937).
    [Crossref]
  20. J. H. Nelson, “The colour vision characteristics of a trichromat,” Part 2, Proc. Phys. Soc. 49, 332–337 (1937).
    [Crossref]
  21. T. Smith, “The colour triangle and colour discrimination,” Discussion on Vision (Physical Society, London, 1932), pp. 212–226.
  22. D. B. Judd, “Estimation of chromaticity differences and nearest color temperature on the standard 1931 I.C.I. colorimetric coordinate system,” J. Opt. Soc. Am. 26421–426 (1936).
    [Crossref]
  23. L. Silberstein, “Investigations on the intrinsic properties of the color domain,” J. Opt. Soc. Am. 28, 63–85 (1938).
    [Crossref]
  24. D. L. MacAdam, “Projective transformations of color-mixture diagrams,” J. Opt. Soc. Am. 32, 2–6 (1942).
    [Crossref]
  25. R. H. Sinden, “A further search for the ideal color system,”I.“A new mechanico-graphical method,” J. Opt. Soc. Am. 27, 124–131 (1937);II.“A reconsideration of the Helmholtz line element,” J. Opt. Soc. Am. 28, 339–347 (1938).
  26. W. Peddie, “The general applicability of Fechner’s law in colour sensation,” Nature 124, 791–792 (1929);“Colour vision and chromaticity scales,” Nature 146, 717–718 (1940).
    [Crossref]

1942 (1)

1941 (1)

W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. 53, 93–112 (1941).
[Crossref]

1940 (1)

D. L. MacAdam, “Noticeability of color differences in daylight,” J. Opt. Soc. Am. 30, 657A (1940).

1938 (3)

1937 (4)

W. D. Wright and F. H. G. Pitt, “The saturation discrimination of two trichromats,” Proc. Phys. Soc. 49, 329–331 (1937).
[Crossref]

J. H. Nelson, “The colour vision characteristics of a trichromat,” Part 2, Proc. Phys. Soc. 49, 332–337 (1937).
[Crossref]

D. L. MacAdam, “Projective transformations of I.C.I. color specifications,” J. Opt. Soc. Am. 27, 294–299 (1937).
[Crossref]

L. A. Jones, “Colorimetry: Preliminary draft of a report on nomenclature and definitions,” J. Opt. Soc. Am. 27, 207–213 (1937).
[Crossref]

1936 (1)

1935 (2)

1934 (1)

W. D. Wright and F. H. G. Pitt, “Hue discrimination in normal colour-vision,” Proc.Phys.Soc. 46, 459–468 (1934).

1933 (1)

1929 (1)

W. Peddie, “The general applicability of Fechner’s law in colour sensation,” Nature 124, 791–792 (1929);“Colour vision and chromaticity scales,” Nature 146, 717–718 (1940).
[Crossref]

1924 (1)

K. S. Gibson and E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Nat. Bur. Standards 19, 131–191 (1924);Trans. Ilium. Eng. Soc. 19, 176–196 (1924).
[Crossref]

1923 (1)

H. Laurens and W. F. Hamilton, “The sensibility of the eye to differences in wave-length,” Am. J. Physiol. 65, 547 (1923).

1917 (1)

1906 (1)

O. Steindler, “Die Farbenempfindlichkeit des normalen und farbenblinden Auges,” Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 2a,  115, 39 (1906).

1884 (1)

A. König and C. Dieterici, “Über die Empfindlichkeit des normalen Auges für Wellenlangenunterschiede des Lichtes,” Wied. Ann. d. Physik und Chemie 22, 579–589 (1884);Graefes Archiv. 30 (2), 158 (1884);Gesammelte Abhandlungen zur Physiologischen Oplik (Leipzig, 1903), p. 23.
[Crossref]

Brickwedde, F. G.

Dieterici, C.

A. König and C. Dieterici, “Über die Empfindlichkeit des normalen Auges für Wellenlangenunterschiede des Lichtes,” Wied. Ann. d. Physik und Chemie 22, 579–589 (1884);Graefes Archiv. 30 (2), 158 (1884);Gesammelte Abhandlungen zur Physiologischen Oplik (Leipzig, 1903), p. 23.
[Crossref]

Gibson, K. S.

K. S. Gibson and E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Nat. Bur. Standards 19, 131–191 (1924);Trans. Ilium. Eng. Soc. 19, 176–196 (1924).
[Crossref]

Hamilton, W. F.

H. Laurens and W. F. Hamilton, “The sensibility of the eye to differences in wave-length,” Am. J. Physiol. 65, 547 (1923).

Hardy, A. C.

A. C. Hardy and collaborators, Handbook of Colorimetry (Technology Press, Cambridge, Massachusetts, 1936).

Jones, L. A.

Judd, D. B.

König, A.

A. König and C. Dieterici, “Über die Empfindlichkeit des normalen Auges für Wellenlangenunterschiede des Lichtes,” Wied. Ann. d. Physik und Chemie 22, 579–589 (1884);Graefes Archiv. 30 (2), 158 (1884);Gesammelte Abhandlungen zur Physiologischen Oplik (Leipzig, 1903), p. 23.
[Crossref]

Laurens, H.

H. Laurens and W. F. Hamilton, “The sensibility of the eye to differences in wave-length,” Am. J. Physiol. 65, 547 (1923).

MacAdam, D. L.

Martin, L. C.

L. C. Martin, F. L. Warburton, and W. J. Morgan, “Determination of the sensitiveness of the eye to differences in the saturation of colours,” Med. Research Council, (H. M. Stationery Office, London, 1933).

Morgan, W. J.

L. C. Martin, F. L. Warburton, and W. J. Morgan, “Determination of the sensitiveness of the eye to differences in the saturation of colours,” Med. Research Council, (H. M. Stationery Office, London, 1933).

Nelson, J. H.

J. H. Nelson, “The colour vision characteristics of a trichromat,” Part 2, Proc. Phys. Soc. 49, 332–337 (1937).
[Crossref]

Peddie, W.

W. Peddie, “The general applicability of Fechner’s law in colour sensation,” Nature 124, 791–792 (1929);“Colour vision and chromaticity scales,” Nature 146, 717–718 (1940).
[Crossref]

Pitt, F. H. G.

W. D. Wright and F. H. G. Pitt, “The saturation discrimination of two trichromats,” Proc. Phys. Soc. 49, 329–331 (1937).
[Crossref]

W. D. Wright and F. H. G. Pitt, “Hue discrimination in normal colour-vision,” Proc.Phys.Soc. 46, 459–468 (1934).

Priest, I. G.

Silberstein, L.

Sinden, R. H.

R. H. Sinden, “A further search for the ideal color system,”I.“A new mechanico-graphical method,” J. Opt. Soc. Am. 27, 124–131 (1937);II.“A reconsideration of the Helmholtz line element,” J. Opt. Soc. Am. 28, 339–347 (1938).

Smith, T.

T. Smith, “The colour triangle and colour discrimination,” Discussion on Vision (Physical Society, London, 1932), pp. 212–226.

Steindler, O.

O. Steindler, “Die Farbenempfindlichkeit des normalen und farbenblinden Auges,” Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 2a,  115, 39 (1906).

Tyndall, E. P. T.

E. P. T. Tyndall, “Chromaticity sensibility to wave-length difference as a function of purity,” J. Opt. Soc. Am. 23, 15–24 (1933).
[Crossref]

K. S. Gibson and E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Nat. Bur. Standards 19, 131–191 (1924);Trans. Ilium. Eng. Soc. 19, 176–196 (1924).
[Crossref]

Warburton, F. L.

L. C. Martin, F. L. Warburton, and W. J. Morgan, “Determination of the sensitiveness of the eye to differences in the saturation of colours,” Med. Research Council, (H. M. Stationery Office, London, 1933).

Wright, W. D.

W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. 53, 93–112 (1941).
[Crossref]

W. D. Wright and F. H. G. Pitt, “The saturation discrimination of two trichromats,” Proc. Phys. Soc. 49, 329–331 (1937).
[Crossref]

W. D. Wright and F. H. G. Pitt, “Hue discrimination in normal colour-vision,” Proc.Phys.Soc. 46, 459–468 (1934).

Am. J. Physiol. (1)

H. Laurens and W. F. Hamilton, “The sensibility of the eye to differences in wave-length,” Am. J. Physiol. 65, 547 (1923).

J. Opt. Soc. Am. (12)

E. P. T. Tyndall, “Chromaticity sensibility to wave-length difference as a function of purity,” J. Opt. Soc. Am. 23, 15–24 (1933).
[Crossref]

D. L. MacAdam, “Photometric relationships between complementary colors,” J. Opt. Soc. Am. 28, 103–111 (1938).
[Crossref]

D. L. MacAdam, “Noticeability of color differences in daylight,” J. Opt. Soc. Am. 30, 657A (1940).

L. A. Jones, “Colorimetry: Preliminary draft of a report on nomenclature and definitions,” J. Opt. Soc. Am. 27, 207–213 (1937).
[Crossref]

D. B. Judd, “A Maxwell triangle yielding uniform chromaticity scales,” J. Opt. Soc. Am. 25, 24–35 (1935).
[Crossref]

I. G. Priest and F. G. Brickwedde, “Minimum perceptible colorimetric purity as a function of dominant wave-length,” J. Opt. Soc. Am. 28, 133–139 (1938).
[Crossref]

D. L. MacAdam, “The theory of the maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 249–252 (1935).
[Crossref]

D. L. MacAdam, “Projective transformations of I.C.I. color specifications,” J. Opt. Soc. Am. 27, 294–299 (1937).
[Crossref]

D. B. Judd, “Estimation of chromaticity differences and nearest color temperature on the standard 1931 I.C.I. colorimetric coordinate system,” J. Opt. Soc. Am. 26421–426 (1936).
[Crossref]

L. Silberstein, “Investigations on the intrinsic properties of the color domain,” J. Opt. Soc. Am. 28, 63–85 (1938).
[Crossref]

D. L. MacAdam, “Projective transformations of color-mixture diagrams,” J. Opt. Soc. Am. 32, 2–6 (1942).
[Crossref]

L. A. Jones, “The fundamental scale for pure hue and retinal sensibility to hue differences,” J. Opt. Soc. Am. 1, 63–77 (1917).
[Crossref]

Nature (1)

W. Peddie, “The general applicability of Fechner’s law in colour sensation,” Nature 124, 791–792 (1929);“Colour vision and chromaticity scales,” Nature 146, 717–718 (1940).
[Crossref]

Proc. Phys. Soc. (3)

W. D. Wright and F. H. G. Pitt, “The saturation discrimination of two trichromats,” Proc. Phys. Soc. 49, 329–331 (1937).
[Crossref]

J. H. Nelson, “The colour vision characteristics of a trichromat,” Part 2, Proc. Phys. Soc. 49, 332–337 (1937).
[Crossref]

W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. 53, 93–112 (1941).
[Crossref]

Proc.Phys.Soc. (1)

W. D. Wright and F. H. G. Pitt, “Hue discrimination in normal colour-vision,” Proc.Phys.Soc. 46, 459–468 (1934).

Sci. Papers Nat. Bur. Standards (1)

K. S. Gibson and E. P. T. Tyndall, “Visibility of radiant energy,” Sci. Papers Nat. Bur. Standards 19, 131–191 (1924);Trans. Ilium. Eng. Soc. 19, 176–196 (1924).
[Crossref]

Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 2a (1)

O. Steindler, “Die Farbenempfindlichkeit des normalen und farbenblinden Auges,” Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 2a,  115, 39 (1906).

Wied. Ann. d. Physik und Chemie (1)

A. König and C. Dieterici, “Über die Empfindlichkeit des normalen Auges für Wellenlangenunterschiede des Lichtes,” Wied. Ann. d. Physik und Chemie 22, 579–589 (1884);Graefes Archiv. 30 (2), 158 (1884);Gesammelte Abhandlungen zur Physiologischen Oplik (Leipzig, 1903), p. 23.
[Crossref]

Other (5)

A. C. Hardy and collaborators, Handbook of Colorimetry (Technology Press, Cambridge, Massachusetts, 1936).

L. C. Martin, F. L. Warburton, and W. J. Morgan, “Determination of the sensitiveness of the eye to differences in the saturation of colours,” Med. Research Council, (H. M. Stationery Office, London, 1933).

Proceedings of the Sixth Session, International Commission on Illumination (Geneva, 1924), pp. 67 and 232.

T. Smith, “The colour triangle and colour discrimination,” Discussion on Vision (Physical Society, London, 1932), pp. 212–226.

R. H. Sinden, “A further search for the ideal color system,”I.“A new mechanico-graphical method,” J. Opt. Soc. Am. 27, 124–131 (1937);II.“A reconsideration of the Helmholtz line element,” J. Opt. Soc. Am. 28, 339–347 (1938).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (50)

F. 1
F. 1

Chromaticities of filters used in discrimination apparatus.

F. 2
F. 2

Vertical cross section of chromaticity discrimination apparatus.

F. 3
F. 3

Horizontal cross section of chromaticity discrimination apparatus.

F. 4
F. 4

Spectrophotometric curves of five filters.

F. 5
F. 5

Spectrophotometric curves of six filters.

F. 6
F. 6

Calibration curves of chromaticity discrimination apparatus.

F. 7
F. 7

Slide rule for calculation of chromaticities synthesized in discrimination apparatus.

F. 8
F. 8

Standard deviations of purity matching for dominant wave-length 455 mμ (PGN, solid curve and circles); and 470 mμ (DLM, broken curve).

F. 9
F. 9

Standard deviations of purity matching for dominant wave-lengths 476 and 576 mμ (PGN, solid curve and circles; DLM, broken curve).

F. 10
F. 10

Standard deviations of purity for dominant wave-lengths 496 and 586 mμ (PGN, circles and solid curve; DLM, broken curve).

F. 11
F. 11

Standard deviations of purity for dominant wave-lengths 490 and 597 mμ (PGN, circles and solid curve; DLM, broken curve).

F. 12
F. 12

Standard deviations of purity for dominant wave-lengths 493 and 700 mμ (PGN, circles and solid curve; DLM, broken curve).

F. 13
F. 13

Standard deviations of purity for dominant wave-length 499 mμ and complementary (PGN, circles and solid curve; DLM, broken curve).

F. 14
F. 14

Standard deviations of purity for dominant wave-length 505 mμ and complementary (PGN, circles and solid curve; DLM, broken curve).

F. 15
F. 15

Standard deviations of purity for dominant wave-length 520 mμ and complementary (PGN, circles and solid curve; DLM, broken curve).

F. 16
F. 16

Standard deviations of purity for dominant wave-length 537.5 mμ and complementary (PGN, circles and solid curve; DLM, broken curve).

F. 17
F. 17

Standard deviations of purity for dominant wave-length 559 mμ and complementary (PGN, circles and solid curve; DLM, broken curve).

F. 18
F. 18

Standard deviations of purity for dominant wave-length 562.7 mμ and complementary (PGN, circles and solid curve; DLM, broken curve).

F. 19
F. 19

Standard deviations of purity for dominant wave-lengths 440 and 567.5 mμ (PGN, circles and solid curve; DLM, broken curve).

F. 20
F. 20

Standard deviations of chromaticity along spectrum locus from 535 to 700 mμ (PGN, circles and solid curve; DLM, broken curve).

F. 21
F. 21

Standard deviations of chromaticity along lines near spectrum locus from 400 to 535 mμ (PGN, circles and solid curves; DLM, broken curve).

F. 22
F. 22

Standard deviations of chromaticity along the straight line connecting points representing 440 and 700 mμ (PGN, circles and solid curve; DLM, broken curve). Note enlarged scale of portions of curve shown at left.

F. 23
F. 23

Standard deviations of chromaticity from point (x = 0.160, y = 0.057), observer: PGN.

F. 24  47
F. 24 47

Standard deviations of chromaticity from indicated standards, observer: PGN.

F. 48
F. 48

Standard deviations of chromaticity from indicated standards, represented ten times actual scale on I.C.I. 1931 standard chromaticity diagram, observer: PGN.

F. 49
F. 49

Standard deviations of wave-length matching in spectrum, derived by extrapolations from Figs. 20, 21, 48.

F. 50
F. 50

Standard deviations of complementary wavelength matching for highly saturated non-spectral colors (purples).

Tables (5)

Tables Icon

Table I Filters for chromaticity instrument (in Illuminant A).

Tables Icon

Table II Standard deviations of color matching.

Tables Icon

Table III Standard deviations of color matching.

Tables Icon

Table IV First step from white.

Tables Icon

Table V Comparisons of first steps from white for nine observers. log [pc(570 mμ)/pc(λ)].

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

W = T ( U sin 2 θ + V cos 2 θ ) ,
X = X u sin 2 θ + X v cos 2 θ ,
Y = Y u sin 2 θ + Y v cos 2 θ ,
Z = Z u sin 2 θ + Z v cos 2 θ .
f = 1 / ( r cot 2 θ + 1 ) , where r = m v / m u .
D = 5 log 10 r .
D = 10 log 10 cot θ .
D = 5 log 10 ( 1 f ) / f .
S = [ ( x u x v ) 2 + ( y u y v ) 2 ] 1 2 ,
where x u = X u / m u , y u = Y u / m u , x v = X v / m v , y v = Y v / m v .
s = f S ,
Δ s = Δ θ ( d s / d θ ) .