Abstract

Using an optical pyrometer method, the thermal conductivity of tungsten has been found to vary linearly from 1.170 watts/(cm2 K°/cm) at 1100°K to 1.026 watts/(cm2 K°/cm) at 2000°K. Similarly, the thermal conductivity of molybdenum has been found to vary linearly from 1.083 watts/(cm2 K°/cm) at 1200°K to 0.666 watt/(cm2 K°/cm) at 1900°K. Spectrographic analysis indicated only traces of impurities in samples of the two metals used in the investigation.

© 1941 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Worthing, Phys. Rev. 4, 535 (1914).
    [CrossRef]
  2. W. P. Davey, Phys. Rev. 25, 753 (1925).
    [CrossRef]
  3. W. E. Forsythe, J. Opt. Soc. Am. 24, 114 (1934).
    [CrossRef]
  4. A. G. Worthing, Phys. Rev. 25, 846 (1925).
    [CrossRef]
  5. A. G. Worthing, Phys. Rev. 10, 377 (1917); Phys. Rev. 25, 846 (1925).
    [CrossRef]
  6. S. Weber, Ann. der Physik 54, 165 (1917).
    [CrossRef]
  7. A. G. Worthing, Astrophys. J. 61, 52 (1925).
  8. A. G. Worthing, Phys. Rev. 10, 377 (1917).
    [CrossRef]

1934 (1)

1925 (3)

A. G. Worthing, Phys. Rev. 25, 846 (1925).
[CrossRef]

W. P. Davey, Phys. Rev. 25, 753 (1925).
[CrossRef]

A. G. Worthing, Astrophys. J. 61, 52 (1925).

1917 (3)

A. G. Worthing, Phys. Rev. 10, 377 (1917).
[CrossRef]

A. G. Worthing, Phys. Rev. 10, 377 (1917); Phys. Rev. 25, 846 (1925).
[CrossRef]

S. Weber, Ann. der Physik 54, 165 (1917).
[CrossRef]

1914 (1)

A. G. Worthing, Phys. Rev. 4, 535 (1914).
[CrossRef]

Davey, W. P.

W. P. Davey, Phys. Rev. 25, 753 (1925).
[CrossRef]

Forsythe, W. E.

Weber, S.

S. Weber, Ann. der Physik 54, 165 (1917).
[CrossRef]

Worthing, A. G.

A. G. Worthing, Astrophys. J. 61, 52 (1925).

A. G. Worthing, Phys. Rev. 25, 846 (1925).
[CrossRef]

A. G. Worthing, Phys. Rev. 10, 377 (1917); Phys. Rev. 25, 846 (1925).
[CrossRef]

A. G. Worthing, Phys. Rev. 10, 377 (1917).
[CrossRef]

A. G. Worthing, Phys. Rev. 4, 535 (1914).
[CrossRef]

Ann. der Physik (1)

S. Weber, Ann. der Physik 54, 165 (1917).
[CrossRef]

Astrophys. J. (1)

A. G. Worthing, Astrophys. J. 61, 52 (1925).

J. Opt. Soc. Am. (1)

Phys. Rev. (5)

A. G. Worthing, Phys. Rev. 25, 846 (1925).
[CrossRef]

A. G. Worthing, Phys. Rev. 10, 377 (1917); Phys. Rev. 25, 846 (1925).
[CrossRef]

A. G. Worthing, Phys. Rev. 4, 535 (1914).
[CrossRef]

W. P. Davey, Phys. Rev. 25, 753 (1925).
[CrossRef]

A. G. Worthing, Phys. Rev. 10, 377 (1917).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of vacuum tube.

Fig. 2
Fig. 2

Radiancy-temperature relationships for tungsten and molybdenum. Curve 1—relationship for tungsten found by Forsythe; points determined by author. Curve 2—relationship for molybdenum given by Worthing. Curve 3—relationship for molybdenum determined by author.

Fig. 3
Fig. 3

Resistivity-temperature relationships for tungsten and molybdenum. Curve 1—relationship for tungsten found by Forsythe; points determined by author. Curve 2 —relationship for molybdenum given by Worthing. Curve 3—relationship for molybdenum determined by author.

Fig. 4
Fig. 4

Temperature distribution curves. Curve 1—10-mil tungsten; Tmax = 2054°K. Curve 2—20-mil molybdenum; Tmax = 1947°K. Curve 3—10-mil tungsten; Tmax = 1703°K. Curve 4—20-mil molybdenum; Tmax = 1709°K. Curve 5—20-mil tungsten; Tmax = 1440°K. Curve 6—20-mil molybdenum; Tmax = 1404°K.

Fig. 5
Fig. 5

Curves of the type from which the integrals of Eq. (1) were obtained.

Fig. 6
Fig. 6

Thermal conductivity vs. temperature. Curve 1—tungsten. Curve 2—molybdenum. Curve 3—Worthing’s relationship for tungsten.

Tables (1)

Tables Icon

Table I Effect of temperature on thermal conductivities and Lorenz numbers of tungsten and molybdenum.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k = 2 max r d T / d l l L ( ω ω max - max ) d l ,
ω ω max = ρ ρ max .
= σ T β ,
log = log σ + β log T ,
T = T max [ 1 - exp [ - μ ( l + l 0 ) ] ] γ ,
l L ω ω max d l             and             l L max d l