Abstract

Operational analysis is used to express the formula for the Fraunhofer diffraction pattern for a grating of N slits in terms of that for a single slit.

© 1941 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. T. Davis, The Theory of Linear Operators (Principia Press, Bloomington, Indiana, 1936), p. 6–7.
  2. R. C. Spencer, Phys. Rev. 55, 239A (1939).
    [Crossref]

1939 (1)

R. C. Spencer, Phys. Rev. 55, 239A (1939).
[Crossref]

Davis, H. T.

H. T. Davis, The Theory of Linear Operators (Principia Press, Bloomington, Indiana, 1936), p. 6–7.

Spencer, R. C.

R. C. Spencer, Phys. Rev. 55, 239A (1939).
[Crossref]

Phys. Rev. (1)

R. C. Spencer, Phys. Rev. 55, 239A (1939).
[Crossref]

Other (1)

H. T. Davis, The Theory of Linear Operators (Principia Press, Bloomington, Indiana, 1936), p. 6–7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P = P 1 ( a ) P 2 .
P 1 ( w ) = P 1 ( d ) P 2 .
P = P 1 ( a ) P 1 ( w ) / P 1 ( d )
P 1 ( a ) = a sin α α ,             α = π a sin θ λ .
P = a sin α α sin N β sin β ,             β = π d sin θ λ .