Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. An art technique known as pointillisme may be mentioned in this regard. It was developed by the French artist Monet on the basis of suggestions offered by two physicists, Rood and Chevreul. In this method of painting, pigments are not mixed to obtain combination colors; but small streaks or dots of pigment of the fundamental colors are placed side by side on the canvas. The artistic effect is obtained by viewing the assemblage from a distance at which the eye is unable to resolve the individual points. The advantage of the method seems to be its sensitivity to contrast, intensity, and hue.
  2. The effect of absorption on the resolving power of the prism has been discussed by F. L. O. Wadsworth, Phil. Mag. 5, 355–374, (1903). The sort of arguments used there are applicable also to lens systems.
    [Crossref]
  3. B. P. Ramsay, E. L. Cleveland, and O. T. Koppius, “Criteria and the intensity-epoch slope,” J. Opt. Soc. Am. 31, 26 (1940).
    [Crossref]
  4. S. Goldman, J. Opt. Soc. Am. 23, 70, 71 (1933).
    [Crossref]
  5. W. E. Williams, Applications of Interferometry (E. P. Dutton and Company, 1930), p. 79.
  6. An interesting account of effects of the latter sort is given by W. W. Sleator and A. E. Martin, J. Opt. Soc. Am. 24, 29, 30 (1934).
    [Crossref]
  7. B. P. Ramsay, O. T. Koppius, and E. L. Cleveland. “The prism and the theory of optical resolution,” J. Opt, Soc. Am. 30, 439 (1940).
    [Crossref]
  8. W. E. Williams, reference 5, p. 27.
  9. W. E. Williams, reference 5, p. 80.
  10. M. Born, Optik (Julius Springer, Berlin, 1933), p. 181.
  11. L. W. Taylor, College Manual of Optics (Ginn and Company, New York, 1924), pp. 61 and 70–75.
  12. G. S. Monk, Light (McGraw-Hill, New York, 1937), pp. 198–201.
  13. L. W. Taylor, reference 11, p. 59.
  14. C. M. Sparrow, Astrophys. J. 44, 76–86 (1916).
    [Crossref]
  15. T. Preston, Theory of Light (Macmillan and Company, New York, 1928), fifth edition, p. 266.
  16. R. W. Ditchburn, Proc. Roy. Irish Acad. 39, 58–72 (1930).
  17. E.g.v. K. B. Merling-Eisenberg, Nature 89, 416 (1937).
    [Crossref]

1940 (2)

B. P. Ramsay, E. L. Cleveland, and O. T. Koppius, “Criteria and the intensity-epoch slope,” J. Opt. Soc. Am. 31, 26 (1940).
[Crossref]

B. P. Ramsay, O. T. Koppius, and E. L. Cleveland. “The prism and the theory of optical resolution,” J. Opt, Soc. Am. 30, 439 (1940).
[Crossref]

1937 (1)

E.g.v. K. B. Merling-Eisenberg, Nature 89, 416 (1937).
[Crossref]

1934 (1)

1933 (1)

1930 (1)

R. W. Ditchburn, Proc. Roy. Irish Acad. 39, 58–72 (1930).

1916 (1)

C. M. Sparrow, Astrophys. J. 44, 76–86 (1916).
[Crossref]

1903 (1)

The effect of absorption on the resolving power of the prism has been discussed by F. L. O. Wadsworth, Phil. Mag. 5, 355–374, (1903). The sort of arguments used there are applicable also to lens systems.
[Crossref]

Born, M.

M. Born, Optik (Julius Springer, Berlin, 1933), p. 181.

Cleveland, E. L.

B. P. Ramsay, O. T. Koppius, and E. L. Cleveland. “The prism and the theory of optical resolution,” J. Opt, Soc. Am. 30, 439 (1940).
[Crossref]

B. P. Ramsay, E. L. Cleveland, and O. T. Koppius, “Criteria and the intensity-epoch slope,” J. Opt. Soc. Am. 31, 26 (1940).
[Crossref]

Ditchburn, R. W.

R. W. Ditchburn, Proc. Roy. Irish Acad. 39, 58–72 (1930).

Goldman, S.

Koppius, O. T.

B. P. Ramsay, E. L. Cleveland, and O. T. Koppius, “Criteria and the intensity-epoch slope,” J. Opt. Soc. Am. 31, 26 (1940).
[Crossref]

B. P. Ramsay, O. T. Koppius, and E. L. Cleveland. “The prism and the theory of optical resolution,” J. Opt, Soc. Am. 30, 439 (1940).
[Crossref]

Martin, A. E.

Merling-Eisenberg, v. K. B.

E.g.v. K. B. Merling-Eisenberg, Nature 89, 416 (1937).
[Crossref]

Monk, G. S.

G. S. Monk, Light (McGraw-Hill, New York, 1937), pp. 198–201.

Preston, T.

T. Preston, Theory of Light (Macmillan and Company, New York, 1928), fifth edition, p. 266.

Ramsay, B. P.

B. P. Ramsay, O. T. Koppius, and E. L. Cleveland. “The prism and the theory of optical resolution,” J. Opt, Soc. Am. 30, 439 (1940).
[Crossref]

B. P. Ramsay, E. L. Cleveland, and O. T. Koppius, “Criteria and the intensity-epoch slope,” J. Opt. Soc. Am. 31, 26 (1940).
[Crossref]

Sleator, W. W.

Sparrow, C. M.

C. M. Sparrow, Astrophys. J. 44, 76–86 (1916).
[Crossref]

Taylor, L. W.

L. W. Taylor, reference 11, p. 59.

L. W. Taylor, College Manual of Optics (Ginn and Company, New York, 1924), pp. 61 and 70–75.

Wadsworth, F. L. O.

The effect of absorption on the resolving power of the prism has been discussed by F. L. O. Wadsworth, Phil. Mag. 5, 355–374, (1903). The sort of arguments used there are applicable also to lens systems.
[Crossref]

Williams, W. E.

W. E. Williams, Applications of Interferometry (E. P. Dutton and Company, 1930), p. 79.

W. E. Williams, reference 5, p. 27.

W. E. Williams, reference 5, p. 80.

Astrophys. J. (1)

C. M. Sparrow, Astrophys. J. 44, 76–86 (1916).
[Crossref]

J. Opt, Soc. Am. (1)

B. P. Ramsay, O. T. Koppius, and E. L. Cleveland. “The prism and the theory of optical resolution,” J. Opt, Soc. Am. 30, 439 (1940).
[Crossref]

J. Opt. Soc. Am. (3)

Nature (1)

E.g.v. K. B. Merling-Eisenberg, Nature 89, 416 (1937).
[Crossref]

Phil. Mag. (1)

The effect of absorption on the resolving power of the prism has been discussed by F. L. O. Wadsworth, Phil. Mag. 5, 355–374, (1903). The sort of arguments used there are applicable also to lens systems.
[Crossref]

Proc. Roy. Irish Acad. (1)

R. W. Ditchburn, Proc. Roy. Irish Acad. 39, 58–72 (1930).

Other (9)

T. Preston, Theory of Light (Macmillan and Company, New York, 1928), fifth edition, p. 266.

An art technique known as pointillisme may be mentioned in this regard. It was developed by the French artist Monet on the basis of suggestions offered by two physicists, Rood and Chevreul. In this method of painting, pigments are not mixed to obtain combination colors; but small streaks or dots of pigment of the fundamental colors are placed side by side on the canvas. The artistic effect is obtained by viewing the assemblage from a distance at which the eye is unable to resolve the individual points. The advantage of the method seems to be its sensitivity to contrast, intensity, and hue.

W. E. Williams, Applications of Interferometry (E. P. Dutton and Company, 1930), p. 79.

W. E. Williams, reference 5, p. 27.

W. E. Williams, reference 5, p. 80.

M. Born, Optik (Julius Springer, Berlin, 1933), p. 181.

L. W. Taylor, College Manual of Optics (Ginn and Company, New York, 1924), pp. 61 and 70–75.

G. S. Monk, Light (McGraw-Hill, New York, 1937), pp. 198–201.

L. W. Taylor, reference 11, p. 59.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Diagram to illustrate notation used in discussing optical lamina of thickness T, refractive index μ, angle of incidence i, and angle of refraction i′.

Equations (71)

Equations on this page are rendered with MathJax. Learn more.

ρ = λ / Δ λ ,
r = 1 / ϕ ,
ν = c / λ ,
ρ = - ν / Δ ν .
m = d / λ ,
ρ = - m / Δ m .
d = 2 T ( μ 2 - sin 2 i ) 1 2 = 2 μ T cos i .
α = γ / 2 = π d / λ ,
ρ = - α / Δ α .
Δ α = π / k ,
α = m π .
ρ = m ( π / Δ α ) = k m .
ϕ = Δ λ / λ .
ϕ = 2 b = 2 Δ α .
ϕ = Δ α / α = ϕ / 2 α .
ρ = Δ t / P .
Δ Δ t = h .
= h ν .
Δ = h Δ ν ,
Δ ν = 1 / Δ t .
ρ = - ν / Δ ν = ν Δ t .
Δ t = N Δ τ ,
Δ τ = t 2 - t 1 ,
Δ τ = d / v = 2 ( T / v ) cos i ,
π / Δ α = k .
π / Δ α = π R 1 2 / 1.21 ( 1 - R ) ,
Δ t = [ π R 1 2 / 1.21 ( 1 - R ) ] [ 2 ( T / v ) cos i ] .
v = ν λ .
ρ = m [ π R 1 2 / 1.21 ( 1 - R ) ] ,
m = 2 ( T / λ ) cos i .
N = π / Δ α
ρ = w D .
ρ = ( λ / Δ i ) ( Δ i / Δ λ ) ,
D = Δ i / Δ λ ,
w = λ / Δ i .
w = ( λ / Δ α ) ( Δ α / Δ i ) .
α = 2 π ( T / λ ) cos i .
Δ α / Δ i = - 2 π ( T / λ ) sin i ,
w = - ( π / Δ α ) ( 2 T sin i ) ,
w = - N 2 T sin i ,
w = N ( E E ) ,
E E = B E cos ( E E B ) = 2 T tan i cos ( E E B ) .
( E E B ) = - i , and             E E = - 2 T sin i .
N = π R 1 2 / 1.21 ( 1 - R ) ,
w = - 2 T sin i [ π R 1 2 / 1.21 ( 1 - R ) ] .
D = - m / 2 T sin i .
I = 4 A 2 cos 2 α .
α λ = m π .
P = ( α / Y ) ( Δ I / Δ α ) .
P = C m N / Y .
I * = ( 4 / π 2 ) I = 0.405 I ,
Δ I = 0.595 I .
P = ( m π / Y ) ( 0.595 F 1 2 / 1.21 ) I ,
P = 0.595 m ( π F 1 2 / 1.21 ) ( I / Y ) ,
P = 1.19 m [ π R 1 2 / 1.21 ( 1 - R ) ] ( I / Y ) ,
F = 4 R / ( 1 / R ) 2 .
I * = 0.350 I ,
P = 1.30 m [ π R 1 2 / 1.36 ( 1 - R ) ] ( I / Y ) .
I * = 0.450 I ,
P = 1.10 m [ π R 1 2 / 1.10 ( 1 - R ) ] ( I / Y ) .
Δ I / Δ α = ( 1.19 I / π ) [ π R 1 2 / 1.21 ( 1 - R ) ] .
Δ I / Δ α = ( 1.19 I / π ) k ,
Δ I / Δ α = 1.19 I / π .
Δ I / Δ α = ( I / π ) k ,
Δ I / Δ α = I / π .
N = 2 k .
α = π m = π ρ .
P = 1.19 ρ ( I / Y ) .
P = 1.19 T ( μ / λ ) ( I / Y ) .
Δ I / Δ α = 0.
Y = I .