Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Moon and D. P. Severance, “The design of photoelectric flicker photometers,” I. E. S. Trans. 34, 801 (1939); M.I.T., Elect. Eng. Dept. Contribution No. 168 (1939).
  2. H. J. McNicholas, “Absolute methods in reflectometry,” Bur. Stand. J. Research 1, 29 (1928); R. S. Hunter, “Methods of determining gloss,” J. Research Nat. Bur. Stand. 18, 19 (1937); D. B. Judd, “Note on the choice of apertures in the definitions of specular gloss and contrast gloss,” J. Opt. Soc. Am. 27, 225 (1937).
    [CrossRef]
  3. Parry Moon, “A table of Fresnel reflection,” J. Math. Phys. 19, 1 (1940).

1940 (1)

Parry Moon, “A table of Fresnel reflection,” J. Math. Phys. 19, 1 (1940).

1939 (1)

P. Moon and D. P. Severance, “The design of photoelectric flicker photometers,” I. E. S. Trans. 34, 801 (1939); M.I.T., Elect. Eng. Dept. Contribution No. 168 (1939).

1928 (1)

H. J. McNicholas, “Absolute methods in reflectometry,” Bur. Stand. J. Research 1, 29 (1928); R. S. Hunter, “Methods of determining gloss,” J. Research Nat. Bur. Stand. 18, 19 (1937); D. B. Judd, “Note on the choice of apertures in the definitions of specular gloss and contrast gloss,” J. Opt. Soc. Am. 27, 225 (1937).
[CrossRef]

McNicholas, H. J.

H. J. McNicholas, “Absolute methods in reflectometry,” Bur. Stand. J. Research 1, 29 (1928); R. S. Hunter, “Methods of determining gloss,” J. Research Nat. Bur. Stand. 18, 19 (1937); D. B. Judd, “Note on the choice of apertures in the definitions of specular gloss and contrast gloss,” J. Opt. Soc. Am. 27, 225 (1937).
[CrossRef]

Moon, P.

P. Moon and D. P. Severance, “The design of photoelectric flicker photometers,” I. E. S. Trans. 34, 801 (1939); M.I.T., Elect. Eng. Dept. Contribution No. 168 (1939).

Moon, Parry

Parry Moon, “A table of Fresnel reflection,” J. Math. Phys. 19, 1 (1940).

Severance, D. P.

P. Moon and D. P. Severance, “The design of photoelectric flicker photometers,” I. E. S. Trans. 34, 801 (1939); M.I.T., Elect. Eng. Dept. Contribution No. 168 (1939).

Bur. Stand. J. Research (1)

H. J. McNicholas, “Absolute methods in reflectometry,” Bur. Stand. J. Research 1, 29 (1928); R. S. Hunter, “Methods of determining gloss,” J. Research Nat. Bur. Stand. 18, 19 (1937); D. B. Judd, “Note on the choice of apertures in the definitions of specular gloss and contrast gloss,” J. Opt. Soc. Am. 27, 225 (1937).
[CrossRef]

I. E. S. Trans. (1)

P. Moon and D. P. Severance, “The design of photoelectric flicker photometers,” I. E. S. Trans. 34, 801 (1939); M.I.T., Elect. Eng. Dept. Contribution No. 168 (1939).

J. Math. Phys. (1)

Parry Moon, “A table of Fresnel reflection,” J. Math. Phys. 19, 1 (1940).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Elevation of the goniophotometer chassis.

Fig. 2
Fig. 2

The table.

Fig. 3
Fig. 3

The goniophotometer, showing gears and counters.

Fig. 4
Fig. 4

Schematic diagram of the compensating circuit for a barrier-layer cell.

Fig. 5
Fig. 5

Actual wiring diagram of the compensating circuit.

Fig. 6
Fig. 6

Fatigue of barrier-layer cell. Dark-adapted cell exposed to constant illumination at t=0.

Fig. 7
Fig. 7

Arrangement for the measurement of specular reflection.

Fig. 8
Fig. 8

Arrangement for the measurement of diffuse reflection.

Fig. 9
Fig. 9

Specular reflection factor of polished black glass (nD=1.53). ○ Polarized light, one run. ● Natural light, average of 2 runs. – Theoretical curve, according to Fresnel formula.

Fig. 10
Fig. 10

Diffuse reflection factor of gray cloths.

Fig. 11
Fig. 11

Specular reflection factor of polished white opal glass (nD=1.48). ○ Experimental results, average of 2 runs. – Theoretical curve, according to Fresnel formula.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

i 2 = i 1 R 1 R 1 + R 2 i 1 R 1 R 2 .
i 2 = 3 × 10 - 9 amp . ,
ρ s ( θ ) = B i ( θ ) B s ,
ρ s ( θ ) = I i ( θ ) I s ,
ρ d ( θ 1 , θ 2 ) = π B r ( θ 1 , θ 2 ) E ( θ 1 ) ,
F c = I s A ( D 1 + D 2 ) 2             ( lumen ) ,
F r = ρ s I s A ( D 1 + D 2 ) 2
ρ s = F r / F c .
F r F c = k r i r k c i c ,
ρ s ( θ ) = i r ( θ ) / i c .
tan β = c + c b
c 2 ( D 2 2 - M 2 ) + 2 c [ c ( a D 2 - M 2 ) - b K D 2 ] + [ c 2 ( a 2 - M 2 ) - 2 a b c K + K 2 b 2 ] = 0
c = c ( M 2 - a D 2 ) + b K D 2 ± b M ( c + K ) D 2 2 - M 2 ,
c c ( M 2 - b M - a D 2 ) + b K ( D 2 - M ) D 2 2 - M .
c b K ( D 2 - M ) D 2 2 + a D 2 - 2 M 2 + b M .
E = B r A b 2
F = B r A A b 2             ( lumen ) ,
F = B r ( π c c b ) 2 .
F = B r 16 h h c c b 2 .
B r = ρ d I s cos θ 1 π D 1 2 .
F = ρ d 16 h 2 c 2 I s cos θ 1 π b 2 D 1 2 .
i F = s = const .
c 1 4 ( π i min s ρ d I s cos θ 1 ) 1 2 b D 1 h .
F c = I s A ( D 1 + D 2 ) 2             ( lumen ) .
E = I s D 1 2 cos θ 1             ( lumen m - 2 )
B ( θ 1 , θ 2 ) = ρ d π I s D 1 2 cos θ 1 , F r = π ρ d I s c 2 c 2 b 2 D 1 2 cos θ 1 .
F r F c = ρ d c 2 b 2 ( D 1 + D 2 D 1 ) 2 cos θ 1
ρ d ( θ 1 , θ 2 ) = ( b c ) 2 ( D 1 D 1 + D 2 ) 2 ( F r F c ) sec θ 1 .
F s = ρ s I s A ( D 1 + D 2 ) 2 .
F d = ρ d π c 2 c 2 I s cos θ 1 b 2 D 1 2 .
F d F s = ρ d ρ s ( c b ) 2 ( D 1 + D 2 D 1 ) 2 cos θ 1 .
c b 1 2 ( ζ ρ s ρ d ) 1 2 ,
c b 0.05.
c b 0.01.
ρ d = 0.787.