Abstract

The absorption spectra of the proteins, egg albumin, lactalbumin, and gelatin were studied and compared with those of related amino acids and simple peptides; the effect of various solvents on these compounds was investigated. A region of selective absorption at about 280 mμ, common to proteins and to simple peptides, indicates that the seat of absorption is the peptide linkage which is the main bond in such compounds. This region coincides with that characteristic of tryptophane and tyrosine. The band consists of two components, whose separation in proteins and amino acid peptides is approximately 1200 wave numbers and in anilides about 850 wave numbers. The breaking of the peptide linkage is the cause of denaturation; the energy required is about 4.4 electron volts and varies with the solvent.

© 1941 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Lewis, Proc. Roy. Soc. B89, 327 (1925); Chem. Rev. 8, 81 (1931).
    [Crossref]
  2. W. Stenstrom and M. Reinhard, J. Biol. Chem. 66, 819 (1925).
  3. T. Svedberg and J. B. Nichols, J. Am. Chem. Soc. 48, 3081 (1926).
    [Crossref]
  4. T. Svedberg and B. Sjogren, J. Am. Chem. Soc. 50, 3318 (1928).
    [Crossref]
  5. M. Spiegel-Adolf, Archi. Path. 12, 533 (1931).
  6. G. I. Lavin, J. N. Northrop, and H. S. Taylor, J. Am. Chem. Soc. 55, 3497 (1933).
    [Crossref]
  7. M. Spiegel-Adolf and O. Krumpel, Biochem. Zeits. 190, 28 (1927).
  8. M. B. Duggar, Biological Effects of Radiation (McGraw-Hill, N.Y. and London, 1936), Vol. I, Chap. VII and VIII.
  9. K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 112, 323 (1935).
  10. E. R. Holiday, Biochem. J. 30, 1795 (1936).
  11. J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).
  12. G. I. Lavin and W. M. Stanley, J. Biol. Chem. 118, 269 (1937); G. I. Lavin, H. S. Loring, and W. M. Stanley, ibid. 130, 259 (1939).
  13. G. A. Anslow and E. R. Lyman, J. Opt. Soc. Am. 31, 114 (1941).
    [Crossref]
  14. J. H. Clark, Am. J. Physiol. 73, 649 (1925).
  15. W. R. Brode, Bur. Stand. J. Research 2, 501 (1929).
    [Crossref]
  16. K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 114, 665 (1936).
  17. G. A. Anslow and M. L. Foster, J. Biol. Chem. 97, 37 (1932).
  18. M. L. Foster, G. A. Anslow, and D. Barnes, J. Biol. Chem. 89, 665 (1930); G. A. Anslow, M. L. Foster, and C. Kingler, ibid. 103, 81 (1933).
  19. I. E. K. Rideal and J. S. Mitchell, Proc. Roy. Soc. A159, 206 (1937).
    [Crossref]
  20. A. G. Allen, R. E. Steiger, M. A. Maguill, and R. A. Franklin, Biochem. J. 31, 195 (1937).
  21. J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).

1941 (1)

1939 (2)

J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).

J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).

1937 (3)

I. E. K. Rideal and J. S. Mitchell, Proc. Roy. Soc. A159, 206 (1937).
[Crossref]

A. G. Allen, R. E. Steiger, M. A. Maguill, and R. A. Franklin, Biochem. J. 31, 195 (1937).

G. I. Lavin and W. M. Stanley, J. Biol. Chem. 118, 269 (1937); G. I. Lavin, H. S. Loring, and W. M. Stanley, ibid. 130, 259 (1939).

1936 (2)

E. R. Holiday, Biochem. J. 30, 1795 (1936).

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 114, 665 (1936).

1935 (1)

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 112, 323 (1935).

1933 (1)

G. I. Lavin, J. N. Northrop, and H. S. Taylor, J. Am. Chem. Soc. 55, 3497 (1933).
[Crossref]

1932 (1)

G. A. Anslow and M. L. Foster, J. Biol. Chem. 97, 37 (1932).

1931 (1)

M. Spiegel-Adolf, Archi. Path. 12, 533 (1931).

1930 (1)

M. L. Foster, G. A. Anslow, and D. Barnes, J. Biol. Chem. 89, 665 (1930); G. A. Anslow, M. L. Foster, and C. Kingler, ibid. 103, 81 (1933).

1929 (1)

W. R. Brode, Bur. Stand. J. Research 2, 501 (1929).
[Crossref]

1928 (1)

T. Svedberg and B. Sjogren, J. Am. Chem. Soc. 50, 3318 (1928).
[Crossref]

1927 (1)

M. Spiegel-Adolf and O. Krumpel, Biochem. Zeits. 190, 28 (1927).

1926 (1)

T. Svedberg and J. B. Nichols, J. Am. Chem. Soc. 48, 3081 (1926).
[Crossref]

1925 (3)

A. J. Lewis, Proc. Roy. Soc. B89, 327 (1925); Chem. Rev. 8, 81 (1931).
[Crossref]

W. Stenstrom and M. Reinhard, J. Biol. Chem. 66, 819 (1925).

J. H. Clark, Am. J. Physiol. 73, 649 (1925).

Allen, A. G.

A. G. Allen, R. E. Steiger, M. A. Maguill, and R. A. Franklin, Biochem. J. 31, 195 (1937).

Anslow, G. A.

G. A. Anslow and E. R. Lyman, J. Opt. Soc. Am. 31, 114 (1941).
[Crossref]

G. A. Anslow and M. L. Foster, J. Biol. Chem. 97, 37 (1932).

M. L. Foster, G. A. Anslow, and D. Barnes, J. Biol. Chem. 89, 665 (1930); G. A. Anslow, M. L. Foster, and C. Kingler, ibid. 103, 81 (1933).

Barnes, D.

M. L. Foster, G. A. Anslow, and D. Barnes, J. Biol. Chem. 89, 665 (1930); G. A. Anslow, M. L. Foster, and C. Kingler, ibid. 103, 81 (1933).

Brode, W. R.

W. R. Brode, Bur. Stand. J. Research 2, 501 (1929).
[Crossref]

Clark, J. H.

J. H. Clark, Am. J. Physiol. 73, 649 (1925).

Duggar, M. B.

M. B. Duggar, Biological Effects of Radiation (McGraw-Hill, N.Y. and London, 1936), Vol. I, Chap. VII and VIII.

Dunn, M. S.

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 114, 665 (1936).

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 112, 323 (1935).

Feraud, K.

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 114, 665 (1936).

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 112, 323 (1935).

Foster, M. L.

G. A. Anslow and M. L. Foster, J. Biol. Chem. 97, 37 (1932).

M. L. Foster, G. A. Anslow, and D. Barnes, J. Biol. Chem. 89, 665 (1930); G. A. Anslow, M. L. Foster, and C. Kingler, ibid. 103, 81 (1933).

Franklin, R. A.

A. G. Allen, R. E. Steiger, M. A. Maguill, and R. A. Franklin, Biochem. J. 31, 195 (1937).

Fruton, J. S.

J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).

J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).

Holiday, E. R.

E. R. Holiday, Biochem. J. 30, 1795 (1936).

Kaplan, J.

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 114, 665 (1936).

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 112, 323 (1935).

Krumpel, O.

M. Spiegel-Adolf and O. Krumpel, Biochem. Zeits. 190, 28 (1927).

Lavin, G. I.

J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).

J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).

G. I. Lavin and W. M. Stanley, J. Biol. Chem. 118, 269 (1937); G. I. Lavin, H. S. Loring, and W. M. Stanley, ibid. 130, 259 (1939).

G. I. Lavin, J. N. Northrop, and H. S. Taylor, J. Am. Chem. Soc. 55, 3497 (1933).
[Crossref]

Lewis, A. J.

A. J. Lewis, Proc. Roy. Soc. B89, 327 (1925); Chem. Rev. 8, 81 (1931).
[Crossref]

Lyman, E. R.

Maguill, M. A.

A. G. Allen, R. E. Steiger, M. A. Maguill, and R. A. Franklin, Biochem. J. 31, 195 (1937).

Mitchell, J. S.

I. E. K. Rideal and J. S. Mitchell, Proc. Roy. Soc. A159, 206 (1937).
[Crossref]

Nichols, J. B.

T. Svedberg and J. B. Nichols, J. Am. Chem. Soc. 48, 3081 (1926).
[Crossref]

Northrop, J. N.

G. I. Lavin, J. N. Northrop, and H. S. Taylor, J. Am. Chem. Soc. 55, 3497 (1933).
[Crossref]

Reinhard, M.

W. Stenstrom and M. Reinhard, J. Biol. Chem. 66, 819 (1925).

Rideal, I. E. K.

I. E. K. Rideal and J. S. Mitchell, Proc. Roy. Soc. A159, 206 (1937).
[Crossref]

Sjogren, B.

T. Svedberg and B. Sjogren, J. Am. Chem. Soc. 50, 3318 (1928).
[Crossref]

Spiegel-Adolf, M.

M. Spiegel-Adolf, Archi. Path. 12, 533 (1931).

M. Spiegel-Adolf and O. Krumpel, Biochem. Zeits. 190, 28 (1927).

Stanley, W. M.

G. I. Lavin and W. M. Stanley, J. Biol. Chem. 118, 269 (1937); G. I. Lavin, H. S. Loring, and W. M. Stanley, ibid. 130, 259 (1939).

Steiger, R. E.

A. G. Allen, R. E. Steiger, M. A. Maguill, and R. A. Franklin, Biochem. J. 31, 195 (1937).

Stenstrom, W.

W. Stenstrom and M. Reinhard, J. Biol. Chem. 66, 819 (1925).

Svedberg, T.

T. Svedberg and B. Sjogren, J. Am. Chem. Soc. 50, 3318 (1928).
[Crossref]

T. Svedberg and J. B. Nichols, J. Am. Chem. Soc. 48, 3081 (1926).
[Crossref]

Taylor, H. S.

G. I. Lavin, J. N. Northrop, and H. S. Taylor, J. Am. Chem. Soc. 55, 3497 (1933).
[Crossref]

Am. J. Physiol. (1)

J. H. Clark, Am. J. Physiol. 73, 649 (1925).

Archi. Path. (1)

M. Spiegel-Adolf, Archi. Path. 12, 533 (1931).

Biochem. J. (2)

E. R. Holiday, Biochem. J. 30, 1795 (1936).

A. G. Allen, R. E. Steiger, M. A. Maguill, and R. A. Franklin, Biochem. J. 31, 195 (1937).

Biochem. Zeits. (1)

M. Spiegel-Adolf and O. Krumpel, Biochem. Zeits. 190, 28 (1927).

Bur. Stand. J. Research (1)

W. R. Brode, Bur. Stand. J. Research 2, 501 (1929).
[Crossref]

J. Am. Chem. Soc. (3)

G. I. Lavin, J. N. Northrop, and H. S. Taylor, J. Am. Chem. Soc. 55, 3497 (1933).
[Crossref]

T. Svedberg and J. B. Nichols, J. Am. Chem. Soc. 48, 3081 (1926).
[Crossref]

T. Svedberg and B. Sjogren, J. Am. Chem. Soc. 50, 3318 (1928).
[Crossref]

J. Biol. Chem. (8)

W. Stenstrom and M. Reinhard, J. Biol. Chem. 66, 819 (1925).

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 114, 665 (1936).

G. A. Anslow and M. L. Foster, J. Biol. Chem. 97, 37 (1932).

M. L. Foster, G. A. Anslow, and D. Barnes, J. Biol. Chem. 89, 665 (1930); G. A. Anslow, M. L. Foster, and C. Kingler, ibid. 103, 81 (1933).

J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).

J. S. Fruton and G. I. Lavin, J. Biol. Chem. 130, 375 (1939).

G. I. Lavin and W. M. Stanley, J. Biol. Chem. 118, 269 (1937); G. I. Lavin, H. S. Loring, and W. M. Stanley, ibid. 130, 259 (1939).

K. Feraud, M. S. Dunn, and J. Kaplan, J. Biol. Chem. 112, 323 (1935).

J. Opt. Soc. Am. (1)

Proc. Roy. Soc. (2)

I. E. K. Rideal and J. S. Mitchell, Proc. Roy. Soc. A159, 206 (1937).
[Crossref]

A. J. Lewis, Proc. Roy. Soc. B89, 327 (1925); Chem. Rev. 8, 81 (1931).
[Crossref]

Other (1)

M. B. Duggar, Biological Effects of Radiation (McGraw-Hill, N.Y. and London, 1936), Vol. I, Chap. VII and VIII.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption curves of I—phenylalanine; II—tryptophane; III—tyrosine. The scale used in plotting the absorption coefficients of phenylalanine is five times that of tryptophane and tyrosine.

Fig. 2
Fig. 2

Absorption curves of I—egg albumin in aqueous solution; II—lactalbumin in alkaline solution; III—gelatin in aqueous solution; IV—gelatin in alkaline solution.

Fig. 3
Fig. 3

Absorption curves of I—gelatin; II—lactalbumin; III—glutathione (reference 13); IV—acetanilide; V—stearic anilide (reference 19). The NaOH curves are plotted at half the scale of the others and the lactalbumin values are reduced 1 3.

Fig. 4
Fig. 4

Effect of irradiation on the absorptivity of egg albumin.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

log I 0 / I = log t 2 / t 1 = k C d ,