Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Adrian, The Mechanism of Nervous Action (University of Pennsylvania Press, Philadelphia, 1932).
  2. D. W. Bronk, Trans. and Studies, College of Physicians of Philadelphia, [4],  6, 102 (1938).
  3. H. K. Hartline and C. H. Graham, J. Cell. and Comp. Physiol. 1, 277 (1932).
    [CrossRef]
  4. H. K. Hartline, J. Cell. and Comp. Physiol. 5, 229 (1934).
    [CrossRef]
  5. C. H. Graham and H. K. Hartline, J. Gen. Physiol. 18, 917 (1935).
  6. S. Hecht and R. E. Williams, J. Gen. Physiol. 5, 1 (1922).
  7. S. Hecht, J. App. Phys. 9, 156 (1937); Physiol. Rev. 17, 239 (1937).
    [CrossRef]
  8. G. Wald (this symposium), J. Opt. Soc. Am., to be published.
  9. H. K. Hartline, Cold Spring Harbor Symposia 3, 245 (1935).
    [CrossRef]
  10. D. W. Bronk and F. Brink, Ann. Rev. Physiol. 1, 385 (1939).
    [CrossRef]
  11. E. D. Adrian and R. Matthews, J. Physiol. 63, 378 (1927);J. Physiol. 64, 279 (1927); J. Physiol. 65, 273 (1928).
  12. R. Granit, Documenta Ophthalmologica 1, 7 (1938).
    [CrossRef]
  13. S. R. Detwiler (this symposium), J. Opt. Soc. Am. 30, 42 (1940).
    [CrossRef]
  14. H. K. Hartline, Am. J. Physiol. 121, 400 (1938).
  15. R. J. Lythgoe, Proc. Phys. Soc. 50, 321 (1938).
    [CrossRef]
  16. H. K. Hartline (in preparation).

1940 (1)

1939 (1)

D. W. Bronk and F. Brink, Ann. Rev. Physiol. 1, 385 (1939).
[CrossRef]

1938 (4)

D. W. Bronk, Trans. and Studies, College of Physicians of Philadelphia, [4],  6, 102 (1938).

H. K. Hartline, Am. J. Physiol. 121, 400 (1938).

R. J. Lythgoe, Proc. Phys. Soc. 50, 321 (1938).
[CrossRef]

R. Granit, Documenta Ophthalmologica 1, 7 (1938).
[CrossRef]

1937 (1)

S. Hecht, J. App. Phys. 9, 156 (1937); Physiol. Rev. 17, 239 (1937).
[CrossRef]

1935 (2)

H. K. Hartline, Cold Spring Harbor Symposia 3, 245 (1935).
[CrossRef]

C. H. Graham and H. K. Hartline, J. Gen. Physiol. 18, 917 (1935).

1934 (1)

H. K. Hartline, J. Cell. and Comp. Physiol. 5, 229 (1934).
[CrossRef]

1932 (1)

H. K. Hartline and C. H. Graham, J. Cell. and Comp. Physiol. 1, 277 (1932).
[CrossRef]

1927 (1)

E. D. Adrian and R. Matthews, J. Physiol. 63, 378 (1927);J. Physiol. 64, 279 (1927); J. Physiol. 65, 273 (1928).

1922 (1)

S. Hecht and R. E. Williams, J. Gen. Physiol. 5, 1 (1922).

Adrian, E. D.

E. D. Adrian and R. Matthews, J. Physiol. 63, 378 (1927);J. Physiol. 64, 279 (1927); J. Physiol. 65, 273 (1928).

E. D. Adrian, The Mechanism of Nervous Action (University of Pennsylvania Press, Philadelphia, 1932).

Brink, F.

D. W. Bronk and F. Brink, Ann. Rev. Physiol. 1, 385 (1939).
[CrossRef]

Bronk, D. W.

D. W. Bronk and F. Brink, Ann. Rev. Physiol. 1, 385 (1939).
[CrossRef]

D. W. Bronk, Trans. and Studies, College of Physicians of Philadelphia, [4],  6, 102 (1938).

Detwiler, S. R.

Graham, C. H.

C. H. Graham and H. K. Hartline, J. Gen. Physiol. 18, 917 (1935).

H. K. Hartline and C. H. Graham, J. Cell. and Comp. Physiol. 1, 277 (1932).
[CrossRef]

Granit, R.

R. Granit, Documenta Ophthalmologica 1, 7 (1938).
[CrossRef]

Hartline, H. K.

H. K. Hartline, Am. J. Physiol. 121, 400 (1938).

H. K. Hartline, Cold Spring Harbor Symposia 3, 245 (1935).
[CrossRef]

C. H. Graham and H. K. Hartline, J. Gen. Physiol. 18, 917 (1935).

H. K. Hartline, J. Cell. and Comp. Physiol. 5, 229 (1934).
[CrossRef]

H. K. Hartline and C. H. Graham, J. Cell. and Comp. Physiol. 1, 277 (1932).
[CrossRef]

H. K. Hartline (in preparation).

Hecht, S.

S. Hecht, J. App. Phys. 9, 156 (1937); Physiol. Rev. 17, 239 (1937).
[CrossRef]

S. Hecht and R. E. Williams, J. Gen. Physiol. 5, 1 (1922).

Lythgoe, R. J.

R. J. Lythgoe, Proc. Phys. Soc. 50, 321 (1938).
[CrossRef]

Matthews, R.

E. D. Adrian and R. Matthews, J. Physiol. 63, 378 (1927);J. Physiol. 64, 279 (1927); J. Physiol. 65, 273 (1928).

Wald, G.

G. Wald (this symposium), J. Opt. Soc. Am., to be published.

Williams, R. E.

S. Hecht and R. E. Williams, J. Gen. Physiol. 5, 1 (1922).

Am. J. Physiol. (1)

H. K. Hartline, Am. J. Physiol. 121, 400 (1938).

Ann. Rev. Physiol. (1)

D. W. Bronk and F. Brink, Ann. Rev. Physiol. 1, 385 (1939).
[CrossRef]

Cold Spring Harbor Symposia (1)

H. K. Hartline, Cold Spring Harbor Symposia 3, 245 (1935).
[CrossRef]

Documenta Ophthalmologica (1)

R. Granit, Documenta Ophthalmologica 1, 7 (1938).
[CrossRef]

J. App. Phys. (1)

S. Hecht, J. App. Phys. 9, 156 (1937); Physiol. Rev. 17, 239 (1937).
[CrossRef]

J. Cell. and Comp. Physiol. (2)

H. K. Hartline and C. H. Graham, J. Cell. and Comp. Physiol. 1, 277 (1932).
[CrossRef]

H. K. Hartline, J. Cell. and Comp. Physiol. 5, 229 (1934).
[CrossRef]

J. Gen. Physiol. (2)

C. H. Graham and H. K. Hartline, J. Gen. Physiol. 18, 917 (1935).

S. Hecht and R. E. Williams, J. Gen. Physiol. 5, 1 (1922).

J. Opt. Soc. Am. (1)

J. Physiol. (1)

E. D. Adrian and R. Matthews, J. Physiol. 63, 378 (1927);J. Physiol. 64, 279 (1927); J. Physiol. 65, 273 (1928).

Proc. Phys. Soc. (1)

R. J. Lythgoe, Proc. Phys. Soc. 50, 321 (1938).
[CrossRef]

Trans. and Studies, College of Physicians of Philadelphia, [4] (1)

D. W. Bronk, Trans. and Studies, College of Physicians of Philadelphia, [4],  6, 102 (1938).

Other (3)

E. D. Adrian, The Mechanism of Nervous Action (University of Pennsylvania Press, Philadelphia, 1932).

G. Wald (this symposium), J. Opt. Soc. Am., to be published.

H. K. Hartline (in preparation).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Oscillograms of the amplified potential changes in a single optic nerve fiber (eye of Limulus) due to steady illumination of the eye. Intensity of illumination is ten times greater for upper record than for lower. Nerve fiber slung over two chlorided silver wires connected to input of condenser-coupled amplifier (time constant=0.1 sec). Recording by General Electric Company Duddell type oscillograph. Deflection upwards denotes negativity of electrode nearest the eye. Magnitude of deflections ca. 1 mv. Full length of each record corresponds to 1 second.

Fig. 2
Fig. 2

Oscillograms showing the bursts of impulses in a single optic nerve fiber (Limulus) in response to short flashes of light of various intensities and durations. Relative intensity for each horizontal row given on right (1.0=3×106 meter-candles). Duration of flash for each vertical column given at top, in seconds. Signal of light flash blackens the white line above the time marker (arrows mark position of signal for the very short flashes). Time marked in 1 5 second (from Hartline, 1934).

Fig. 3
Fig. 3

Impulses in a single optic nerve fiber (Limulus) in response to lights of different wave-lengths, showing that responses can be made practically identical by suitable adjustment of the incident energies. Column headed λ mμ gives the value of the central wave-length of the spectral band (Wratten Monochromatic filters+35 mm 1 percent CuCl2 solution). Column headed I gives relative intensities incident on the eye (thermopile determinations; value at λ=530 mμ set equal to unity). Duration of stimulus flash 0.04 sec. (from Graham and Hartline, 1935).

Fig. 4
Fig. 4

Visibility curve for a single visual sense cell (Limulus). “Visibility” of each spectral band is the reciprocal of the relative intensity necessary to produce a specified burst of impulses (cf. Fig. 3). Value at λ=530 mμ set equal to unity (data from Graham and Hartline, 1935).

Fig. 5
Fig. 5

Discharge of impulses in an optic nerve fiber (Limulus) in response to prolonged illumination of the eye, at three different intensities (relative values given at left). Eye partially light adapted. Signal of exposure to light blackens out white line above time marker. Time marked in 1 5 second.

Fig. 6
Fig. 6

Dark adaptation of a visual sense cell. Bursts of impulses in an optic nerve fiber (Limulus) in response to a test flash (0.01 sec., fixed intensity) thrown upon the eye at various times (given at left) following an adapting exposure. Signal of flash appears in white line above time marker. Time marked in 1 5 sec.

Fig. 7
Fig. 7

Oscillograms showing the discharge of impulses in single optic nerve fibers of the vertebrate eye (frog), illustrating the three most common types of response to illumination of the retina. Individual deflections are ca. 50–100μv. High noise level on base-line due to large resistance of the very fine nerve strands across amplifier input. Signal of the exposure to light blackens out white line above time marker. Time marked in 1 5 second. (From Hartline, 1938.)

Fig. 8
Fig. 8

Records of impulses discharged in single optic nerve fibers of the vertebrate eye (frog). Upper record: responses to movement of small spot of light on retina (diameter of spot 50μ). White lines above time marker signal the movement; they are shadows of spokes attached to the micrometer screw driving spot of light across the retina. Each spoke equivalent to 7μ on retina. Nerve fiber was one responding to “on” and “off” (as in Fig. 7(B)). Lower records: discharge of impulses in a fiber responding only to cessation of illumination (as in Fig. 7(C)), showing how the full response (upper record of this pair) can be abruptly cut short by re-illumination of the retina (lower record). Signal of retinal illumination blackens out white line above time marker. Time in 1 5 second.

Fig. 9
Fig. 9

Chart of the retinal region supplying a single optic nerve fiber (eye of a frog). Each curve encloses the retinal region within which the exploring spot of light (relative size shown at upper left) produced responses in the fiber, at an intensity of illumination whose logarithm is given on the respective curve. On each curve itself the indicated intensity was just threshold; the set of curves constitute a contour map of the distribution of sensitivity to light over the retina, referred to this particular fiber.