Abstract

The Zeeman effect for the arc spectrum of rhodium has been photographed with a large Bitter type magnet at field intensities up to 94,000 gauss. Data are given on the Zeeman patterns of 446 lines, from which g values are calculated for nearly all the known low and middle spectral terms of the rhodium atom. For terms arising from the low even configuration, the g values are found to be given by LS coupling formulas, except for the terms having J=212 or 112, in which case a perturbation between the overlapping d9 and d85s configurations destroys the agreement. The g sum rule is found to be valid when the terms from the two configurations are taken together. For the odd configurations the g values lie between those predicted by LS and Jj coupling formulas. The classification of lines by other investigators has been thoroughly checked, and a new term list is given with 14 additional terms. The old term values have been recalculated on the basis of new wave-length data.

© 1940 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Snyder, Astrophys. J. 14, 179 (1901).
    [Crossref]
  2. W. F. Meggers and O. Laporte, Phys. Rev. 28, 642 (1926).
    [Crossref]
  3. L. A. Sommer, Naturwiss. 13, 392 (1925).
    [Crossref]
  4. L. A. Sommer, Zeits. f. Physik 45, 147 (1927).
    [Crossref]
  5. G. R. Harrison and F. Bitter, Phys. Rev. 57, 15 (1940).
    [Crossref]
  6. G. R. Harrison and J. P. Molnar, J. Opt. Soc. Am. 30, 343 (1940).
    [Crossref]

1940 (2)

G. R. Harrison and F. Bitter, Phys. Rev. 57, 15 (1940).
[Crossref]

G. R. Harrison and J. P. Molnar, J. Opt. Soc. Am. 30, 343 (1940).
[Crossref]

1927 (1)

L. A. Sommer, Zeits. f. Physik 45, 147 (1927).
[Crossref]

1926 (1)

W. F. Meggers and O. Laporte, Phys. Rev. 28, 642 (1926).
[Crossref]

1925 (1)

L. A. Sommer, Naturwiss. 13, 392 (1925).
[Crossref]

1901 (1)

C. P. Snyder, Astrophys. J. 14, 179 (1901).
[Crossref]

Bitter, F.

G. R. Harrison and F. Bitter, Phys. Rev. 57, 15 (1940).
[Crossref]

Harrison, G. R.

G. R. Harrison and J. P. Molnar, J. Opt. Soc. Am. 30, 343 (1940).
[Crossref]

G. R. Harrison and F. Bitter, Phys. Rev. 57, 15 (1940).
[Crossref]

Laporte, O.

W. F. Meggers and O. Laporte, Phys. Rev. 28, 642 (1926).
[Crossref]

Meggers, W. F.

W. F. Meggers and O. Laporte, Phys. Rev. 28, 642 (1926).
[Crossref]

Molnar, J. P.

Snyder, C. P.

C. P. Snyder, Astrophys. J. 14, 179 (1901).
[Crossref]

Sommer, L. A.

L. A. Sommer, Zeits. f. Physik 45, 147 (1927).
[Crossref]

L. A. Sommer, Naturwiss. 13, 392 (1925).
[Crossref]

Astrophys. J. (1)

C. P. Snyder, Astrophys. J. 14, 179 (1901).
[Crossref]

J. Opt. Soc. Am. (1)

Naturwiss. (1)

L. A. Sommer, Naturwiss. 13, 392 (1925).
[Crossref]

Phys. Rev. (2)

W. F. Meggers and O. Laporte, Phys. Rev. 28, 642 (1926).
[Crossref]

G. R. Harrison and F. Bitter, Phys. Rev. 57, 15 (1940).
[Crossref]

Zeits. f. Physik (1)

L. A. Sommer, Zeits. f. Physik 45, 147 (1927).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Reproduction from one of the spectrograms of the Zeeman effect in Rh I. The upper pair of spectra are the π and σ components at 70,000 gauss, the middle spectrum is the normal arc spectrum at zero field, and the lower pair of spectra are the σ and π components at 90,500 gauss.

Fig. 2
Fig. 2

Reproductions from sections of the motion picture film which come from the automatic comparator when used to measure Zeeman patterns. The upper trace is from a “symmetrical” Zeeman pattern from a J = 2 1 2 to J = 2 1 2 transition. The lower trace is from a “shade-in” type pattern for a J = 2 1 2 to J = 3 1 2 transition.

Tables (4)

Tables Icon

Table I Classified lines in the Rh I spectrum. The wave-lengths and intensities are from data supplied by the M.I.T.-W.P.A. Wavelength Project. The first four figures of the computed wave numbers are omitted. The g values which are in parentheses were assumed from previous data in order to calculate the g value of the other combining term of the line. Patterns marked “O” have one set of σ components overlapped by a nearby pattern; g values obtained from these patterns may both be incorrect by a constant amount. Patterns marked “D” could be measured only in their π components, either because of faintness of exposure or because of overlapping of both sets of σ components. Unresolved patterns are marked “U.”

Tables Icon

Table II Energy levels in Rh I.

Tables Icon

Table III Observed and theoretical g values for the low even configurations in Rh I.

Tables Icon

Table IV Observed and theoretical g values for the 4d85p configuration in Rh I.