Abstract

A study has been made of the infra-red dispersion of the magnetic double refraction—Cotton-Mouton effect—in the wave-length region from λ=0.650μ to 1.6μ of the following liquids: nitrobenzene, chlorobenzene, carbon disulfide, halowax oil, o-nitrotoluene, benzene and toluene. Ratios of the observed double refraction to the electric double refraction are shown to be constant within experimental error. Comparison of observed dispersion curves with calculated curves from Havelock’s law is also shown to fit for the most part within experimental error. This indicates that the magnetic and optical anisotropies of the molecules are relatively independent of the wave-length. The deviation of Havelock’s curve from the observed curves in general indicate that Havelock values for short wave-lengths are too high, and for long wave-lengths too low. The deviations shown for the liquids tried are greatest for benzene, where for long wave-lengths the difference amounts to about 5 percent.

© 1940 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For general references see J. W. Beams, Rev. Mod. Phys. 4, 133–172 (1932); G. Szivessy, Handbuch der Physik (Julius Springer, 1929), Vol. 21, pp. 724–884.
    [Crossref]
  2. T. H. Havelock, Proc. Roy. Soc. A80, 28 (1907); Proc. Roy. Soc. A84, 492 (1911); Phys. Rev. 28, 136 (1909).
    [Crossref]
  3. M. Born, Ann. d. Physik 55, 177 (1918); P. Langevin, Le Radium 7, 249 (1910); Comptes rendus 151, 475 (1910); G. Szivessy, Handbuch der Physik (Julius Springer, 1929), Vol. 21, pp. 808–823; P. Debye, Marx Handbuch der Radiologie (Leipzig, 1923), Vol. 6, p. 769.
    [Crossref]
  4. P. Debye, Marx Handbuch der Radiologie (Leipzig, 1925), Vol. 6, pp. 754–776; L. Lorenz, Ann. d. physik. Chemie 11, 70 (1880); H. A. Lorentz, Theory of Electrons (Leipzig, 1909), p. 144.
    [Crossref]
  5. L. R. Ingersoll and Wesley R. Winch, Phys. Rev. 44, 399–405 (1933).
    [Crossref]
  6. L. R. Ingersoll, J. Opt. Soc. Am. 27, 411–413 (1937).
    [Crossref]
  7. Ingersoll, Rudnick, Slack, and Underwood, Phys. Rev. 57, 1146 (1940).
    [Crossref]
  8. L. R. Ingersoll, J. Opt. Soc. Am. and Rev. Sci. Inst. 6, 663 (1922).
    [Crossref]
  9. A. Cotton and H. Mouton, Comptes rendus 147, 193 (1908); Comptes rendus 150, 857 (1910); J. de phys. et rad. 5, 1, 5 (1911); Ann. de Chemie et Phys. 8, 20, 213 (1910); C. A. Skinner, Phys. Rev. 29, 541 (1909); G. Szivessy, Zeits. f. Physik 18, 97 (1923).
    [Crossref]

1940 (1)

Ingersoll, Rudnick, Slack, and Underwood, Phys. Rev. 57, 1146 (1940).
[Crossref]

1937 (1)

1933 (1)

L. R. Ingersoll and Wesley R. Winch, Phys. Rev. 44, 399–405 (1933).
[Crossref]

1932 (1)

For general references see J. W. Beams, Rev. Mod. Phys. 4, 133–172 (1932); G. Szivessy, Handbuch der Physik (Julius Springer, 1929), Vol. 21, pp. 724–884.
[Crossref]

1922 (1)

L. R. Ingersoll, J. Opt. Soc. Am. and Rev. Sci. Inst. 6, 663 (1922).
[Crossref]

1918 (1)

M. Born, Ann. d. Physik 55, 177 (1918); P. Langevin, Le Radium 7, 249 (1910); Comptes rendus 151, 475 (1910); G. Szivessy, Handbuch der Physik (Julius Springer, 1929), Vol. 21, pp. 808–823; P. Debye, Marx Handbuch der Radiologie (Leipzig, 1923), Vol. 6, p. 769.
[Crossref]

1908 (1)

A. Cotton and H. Mouton, Comptes rendus 147, 193 (1908); Comptes rendus 150, 857 (1910); J. de phys. et rad. 5, 1, 5 (1911); Ann. de Chemie et Phys. 8, 20, 213 (1910); C. A. Skinner, Phys. Rev. 29, 541 (1909); G. Szivessy, Zeits. f. Physik 18, 97 (1923).
[Crossref]

1907 (1)

T. H. Havelock, Proc. Roy. Soc. A80, 28 (1907); Proc. Roy. Soc. A84, 492 (1911); Phys. Rev. 28, 136 (1909).
[Crossref]

Beams, J. W.

For general references see J. W. Beams, Rev. Mod. Phys. 4, 133–172 (1932); G. Szivessy, Handbuch der Physik (Julius Springer, 1929), Vol. 21, pp. 724–884.
[Crossref]

Born, M.

M. Born, Ann. d. Physik 55, 177 (1918); P. Langevin, Le Radium 7, 249 (1910); Comptes rendus 151, 475 (1910); G. Szivessy, Handbuch der Physik (Julius Springer, 1929), Vol. 21, pp. 808–823; P. Debye, Marx Handbuch der Radiologie (Leipzig, 1923), Vol. 6, p. 769.
[Crossref]

Cotton, A.

A. Cotton and H. Mouton, Comptes rendus 147, 193 (1908); Comptes rendus 150, 857 (1910); J. de phys. et rad. 5, 1, 5 (1911); Ann. de Chemie et Phys. 8, 20, 213 (1910); C. A. Skinner, Phys. Rev. 29, 541 (1909); G. Szivessy, Zeits. f. Physik 18, 97 (1923).
[Crossref]

Debye, P.

P. Debye, Marx Handbuch der Radiologie (Leipzig, 1925), Vol. 6, pp. 754–776; L. Lorenz, Ann. d. physik. Chemie 11, 70 (1880); H. A. Lorentz, Theory of Electrons (Leipzig, 1909), p. 144.
[Crossref]

Havelock, T. H.

T. H. Havelock, Proc. Roy. Soc. A80, 28 (1907); Proc. Roy. Soc. A84, 492 (1911); Phys. Rev. 28, 136 (1909).
[Crossref]

Ingersoll,

Ingersoll, Rudnick, Slack, and Underwood, Phys. Rev. 57, 1146 (1940).
[Crossref]

Ingersoll, L. R.

L. R. Ingersoll, J. Opt. Soc. Am. 27, 411–413 (1937).
[Crossref]

L. R. Ingersoll and Wesley R. Winch, Phys. Rev. 44, 399–405 (1933).
[Crossref]

L. R. Ingersoll, J. Opt. Soc. Am. and Rev. Sci. Inst. 6, 663 (1922).
[Crossref]

Mouton, H.

A. Cotton and H. Mouton, Comptes rendus 147, 193 (1908); Comptes rendus 150, 857 (1910); J. de phys. et rad. 5, 1, 5 (1911); Ann. de Chemie et Phys. 8, 20, 213 (1910); C. A. Skinner, Phys. Rev. 29, 541 (1909); G. Szivessy, Zeits. f. Physik 18, 97 (1923).
[Crossref]

Rudnick,

Ingersoll, Rudnick, Slack, and Underwood, Phys. Rev. 57, 1146 (1940).
[Crossref]

Slack,

Ingersoll, Rudnick, Slack, and Underwood, Phys. Rev. 57, 1146 (1940).
[Crossref]

Underwood,

Ingersoll, Rudnick, Slack, and Underwood, Phys. Rev. 57, 1146 (1940).
[Crossref]

Winch, Wesley R.

L. R. Ingersoll and Wesley R. Winch, Phys. Rev. 44, 399–405 (1933).
[Crossref]

Ann. d. Physik (1)

M. Born, Ann. d. Physik 55, 177 (1918); P. Langevin, Le Radium 7, 249 (1910); Comptes rendus 151, 475 (1910); G. Szivessy, Handbuch der Physik (Julius Springer, 1929), Vol. 21, pp. 808–823; P. Debye, Marx Handbuch der Radiologie (Leipzig, 1923), Vol. 6, p. 769.
[Crossref]

Comptes rendus (1)

A. Cotton and H. Mouton, Comptes rendus 147, 193 (1908); Comptes rendus 150, 857 (1910); J. de phys. et rad. 5, 1, 5 (1911); Ann. de Chemie et Phys. 8, 20, 213 (1910); C. A. Skinner, Phys. Rev. 29, 541 (1909); G. Szivessy, Zeits. f. Physik 18, 97 (1923).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. and Rev. Sci. Inst. (1)

L. R. Ingersoll, J. Opt. Soc. Am. and Rev. Sci. Inst. 6, 663 (1922).
[Crossref]

Phys. Rev. (2)

L. R. Ingersoll and Wesley R. Winch, Phys. Rev. 44, 399–405 (1933).
[Crossref]

Ingersoll, Rudnick, Slack, and Underwood, Phys. Rev. 57, 1146 (1940).
[Crossref]

Proc. Roy. Soc. (1)

T. H. Havelock, Proc. Roy. Soc. A80, 28 (1907); Proc. Roy. Soc. A84, 492 (1911); Phys. Rev. 28, 136 (1909).
[Crossref]

Rev. Mod. Phys. (1)

For general references see J. W. Beams, Rev. Mod. Phys. 4, 133–172 (1932); G. Szivessy, Handbuch der Physik (Julius Springer, 1929), Vol. 21, pp. 724–884.
[Crossref]

Other (1)

P. Debye, Marx Handbuch der Radiologie (Leipzig, 1925), Vol. 6, pp. 754–776; L. Lorenz, Ann. d. physik. Chemie 11, 70 (1880); H. A. Lorentz, Theory of Electrons (Leipzig, 1909), p. 144.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Cotton-Mouton cell; (b) Cross-sectional view of end of cell as seen from above.

Fig. 2
Fig. 2

(a) Cotton-Mouton dispersion curves for halowax, nitrobenzene, o-nitrotoluene and chlorobenzene; (b) Cotton-Mouton dispersion curves for toluene, benzene and carbon disulfide.

Tables (2)

Tables Icon

Table I Relative values of Cotton-Mouton constant for different substances used. CS2=−100.

Tables Icon

Table II Relative values of Cotton-Mouton constant C for different wave-lengths. K=Kerr constant.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D = 2 π L ( n p - n s ) λ = 2 π C L H 2 ,
C = h ( n 2 - 1 ) 2 n λ ,
C = ( n 2 - 1 ) ( n 2 + 2 ) 4 n λ · Θ 1 + Θ 2 α 0 · ( 1 + 4 3 S m ) ,
Θ 1 = 1 45 k T [ ( w 1 - w 2 ) ( b 1 - b 2 ) + ( w 2 - w 3 ) ( b 2 - b 3 ) + ( w 3 - w 1 ) ( b 3 - b 1 ) ] , Θ 2 = 1 45 k 2 T 2 [ ( m 1 2 - m 2 2 ) ( b 1 - b 2 ) + ( m 2 2 - m 3 2 ) ( b 2 - b 3 ) + ( m 3 2 - m 1 2 ) ( b 3 - b 1 ) ] ,
n 2 - 1 n 2 + 2 = 4 π N α 0 3 = 4 π N 3 · b 1 + b 2 + b 3 3 ,