Abstract

The paper presents the results of a study of the build-up and decay of some 200 samples of silicate, tungstate, molybdate and sulphide phosphors, excited by Hg 2536A radiation. The normal silicates decay at first exponentially, with a time constant of the order of 10−2 sec. This initial rate is independent of the intensity and the duration of the excitation, and varies little among different samples of a given class (e.g., Zn2SiO4·Mn). The later decay is slower, and does vary markedly from sample to sample, and depends on the intensity and duration of the excitation. CaWO4 decays too rapidly to be measured with the apparatus used (<50 microseconds); the decay of MgWO4 lasts about 2×10−4 sec.; both these tungstates show a very faint long phosphorescence which can be enhanced slightly by addition of impurities. The red luminescence contributed by Sm in these and other “pure” phosphors decays exponentially with a time constant of about 7×10−4 sec. Sulphides have complicated decay characteristics, dependent on the intensity and duration of the excitation. Comparison is made with the results of a study of decay after electron bombardment, and with other published data.

© 1939 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Nelson and R. P. Johnson, Phys. Rev. 55, 592(A) (1939); Nelson, Johnson, and Nottingham, J. App. Phys. 10, 335 (1939).
    [CrossRef]
  2. G. R. Fonda, J. App. Phys. 10, 408 (1939).
    [CrossRef]
  3. This term is used for convenience, without prejudice as to the nature of the entities involved.
  4. It appears that the older phosphors differed chiefly in efficiency, not in any essentials of behavior, from the materials recently developed for television and fluorescent lighting. See, for example, E. L. Nichols and E. Merritt, Studies in Luminescence (Washington, 1912). A fairly comprehensive bibliography is given by P. Pringsheim, Fluorescenz und Phosphorescenz (Berlin, 1928, third edition); for a supplementary bibliography see H. Rupp, Die Leuchtmassen und ihre Verwendung (Berlin, 1937).
  5. A. Schleede and B. Bartels, Zeits. f. tech. Physik 19, 363 (1938).
  6. W. de Groot, Physica 6, 275 (1939).
    [CrossRef]
  7. N. C. Beese, J. Opt. Soc. Am. 29, 26 (1939).
    [CrossRef]

1939 (4)

R. B. Nelson and R. P. Johnson, Phys. Rev. 55, 592(A) (1939); Nelson, Johnson, and Nottingham, J. App. Phys. 10, 335 (1939).
[CrossRef]

G. R. Fonda, J. App. Phys. 10, 408 (1939).
[CrossRef]

W. de Groot, Physica 6, 275 (1939).
[CrossRef]

N. C. Beese, J. Opt. Soc. Am. 29, 26 (1939).
[CrossRef]

1938 (1)

A. Schleede and B. Bartels, Zeits. f. tech. Physik 19, 363 (1938).

Bartels, B.

A. Schleede and B. Bartels, Zeits. f. tech. Physik 19, 363 (1938).

Beese, N. C.

de Groot, W.

W. de Groot, Physica 6, 275 (1939).
[CrossRef]

Fonda, G. R.

G. R. Fonda, J. App. Phys. 10, 408 (1939).
[CrossRef]

Johnson, R. P.

R. B. Nelson and R. P. Johnson, Phys. Rev. 55, 592(A) (1939); Nelson, Johnson, and Nottingham, J. App. Phys. 10, 335 (1939).
[CrossRef]

Merritt, E.

It appears that the older phosphors differed chiefly in efficiency, not in any essentials of behavior, from the materials recently developed for television and fluorescent lighting. See, for example, E. L. Nichols and E. Merritt, Studies in Luminescence (Washington, 1912). A fairly comprehensive bibliography is given by P. Pringsheim, Fluorescenz und Phosphorescenz (Berlin, 1928, third edition); for a supplementary bibliography see H. Rupp, Die Leuchtmassen und ihre Verwendung (Berlin, 1937).

Nelson, R. B.

R. B. Nelson and R. P. Johnson, Phys. Rev. 55, 592(A) (1939); Nelson, Johnson, and Nottingham, J. App. Phys. 10, 335 (1939).
[CrossRef]

Nichols, E. L.

It appears that the older phosphors differed chiefly in efficiency, not in any essentials of behavior, from the materials recently developed for television and fluorescent lighting. See, for example, E. L. Nichols and E. Merritt, Studies in Luminescence (Washington, 1912). A fairly comprehensive bibliography is given by P. Pringsheim, Fluorescenz und Phosphorescenz (Berlin, 1928, third edition); for a supplementary bibliography see H. Rupp, Die Leuchtmassen und ihre Verwendung (Berlin, 1937).

Schleede, A.

A. Schleede and B. Bartels, Zeits. f. tech. Physik 19, 363 (1938).

J. App. Phys. (1)

G. R. Fonda, J. App. Phys. 10, 408 (1939).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. (1)

R. B. Nelson and R. P. Johnson, Phys. Rev. 55, 592(A) (1939); Nelson, Johnson, and Nottingham, J. App. Phys. 10, 335 (1939).
[CrossRef]

Physica (1)

W. de Groot, Physica 6, 275 (1939).
[CrossRef]

Zeits. f. tech. Physik (1)

A. Schleede and B. Bartels, Zeits. f. tech. Physik 19, 363 (1938).

Other (2)

This term is used for convenience, without prejudice as to the nature of the entities involved.

It appears that the older phosphors differed chiefly in efficiency, not in any essentials of behavior, from the materials recently developed for television and fluorescent lighting. See, for example, E. L. Nichols and E. Merritt, Studies in Luminescence (Washington, 1912). A fairly comprehensive bibliography is given by P. Pringsheim, Fluorescenz und Phosphorescenz (Berlin, 1928, third edition); for a supplementary bibliography see H. Rupp, Die Leuchtmassen und ihre Verwendung (Berlin, 1937).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Typical semi-log build-up and decay curve for a “normal” green-luminescing artificial willemite (Method III).

Fig. 2
Fig. 2

Build-up and decay of a “normal” artificial willemite at different intensities of excitation (Method III). Note that the curves differ by a scale factor of about 40.

Fig. 3
Fig. 3

Decay of a “normal” artificial willemite after brief excitation by neon resonance radiation (Method II).

Fig. 4
Fig. 4

Decay of an artificial willemite with pronounced persistent phosphorescence, at various intensities of excitation (Method III).

Fig. 5
Fig. 5

Decay of an artificial willemite containing more than the optimum concentration of Mn, at different intensities of excitation (Method III).

Fig. 6
Fig. 6

Decay of two zinc-beryllium silicates (Method III). The upper curve is for a yellow-luminescing material, the lower for a red-luminescing material.

Fig. 7
Fig. 7

Decay of two cadmium silicate samples (Method III). Note the scale-displacement.

Fig. 8
Fig. 8

Decay of yellow luminescence of four microscope cover glasses (Method III).

Fig. 9
Fig. 9

Decay of red luminescence associated with Sm in typical “pure” phosphors (Method III).

Fig. 10
Fig. 10

Decay of ZnS·Ag, at different intensities of excitation (Method III).

Fig. 11
Fig. 11

The data of Fig. 10(A), plotted to show agreement with the empirical decay law L=a/(b+t).

Fig. 12
Fig. 12

Decay of ZnS·CdS·Ag, at different intensities of excitation (Method III).

Fig. 13
Fig. 13

The data of Fig. 12(A), plotted to show agreement the empirical decay law L=c/(d+t)2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L = c / ( d + t ) 2 ,