Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbé, “Neue Apparate zur Bestimung des Brechungs- und Zerstreuungsvermogens fester und flüssiger Körper,” Zeits. f. Naturwiss. 8, 96–174 (1874).
  2. C. Pulfrich, “Ein Neues Refractometer,” Zeits. f. Instrumentenk. 7, 16–27 (1887).
  3. C. Pulfrich, “Über das neue Eintauchrefraktometer der Ferma Carl Zeiss,” Zeits. f. angew. Chemie1168 ff (1899).
  4. “Precision Refractometer,” J. Frank. Inst. 207, 116 to 119 (1929).

1929 (1)

“Precision Refractometer,” J. Frank. Inst. 207, 116 to 119 (1929).

1899 (1)

C. Pulfrich, “Über das neue Eintauchrefraktometer der Ferma Carl Zeiss,” Zeits. f. angew. Chemie1168 ff (1899).

1887 (1)

C. Pulfrich, “Ein Neues Refractometer,” Zeits. f. Instrumentenk. 7, 16–27 (1887).

1874 (1)

E. Abbé, “Neue Apparate zur Bestimung des Brechungs- und Zerstreuungsvermogens fester und flüssiger Körper,” Zeits. f. Naturwiss. 8, 96–174 (1874).

Abbé, E.

E. Abbé, “Neue Apparate zur Bestimung des Brechungs- und Zerstreuungsvermogens fester und flüssiger Körper,” Zeits. f. Naturwiss. 8, 96–174 (1874).

Pulfrich, C.

C. Pulfrich, “Über das neue Eintauchrefraktometer der Ferma Carl Zeiss,” Zeits. f. angew. Chemie1168 ff (1899).

C. Pulfrich, “Ein Neues Refractometer,” Zeits. f. Instrumentenk. 7, 16–27 (1887).

J. Frank. Inst. (1)

“Precision Refractometer,” J. Frank. Inst. 207, 116 to 119 (1929).

Zeits. f. angew. Chemie (1)

C. Pulfrich, “Über das neue Eintauchrefraktometer der Ferma Carl Zeiss,” Zeits. f. angew. Chemie1168 ff (1899).

Zeits. f. Instrumentenk. (1)

C. Pulfrich, “Ein Neues Refractometer,” Zeits. f. Instrumentenk. 7, 16–27 (1887).

Zeits. f. Naturwiss. (1)

E. Abbé, “Neue Apparate zur Bestimung des Brechungs- und Zerstreuungsvermogens fester und flüssiger Körper,” Zeits. f. Naturwiss. 8, 96–174 (1874).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Path of light through sample and refracting prism in a typical refractometer.

Fig. 2
Fig. 2

Computed error resulting from change in prism index alone. The value corresponding to a given prism index applies to all points of the scale.

Fig. 3
Fig. 3

Reading error resulting from change in prism index, the instrument having been adjusted correctly at nD=1.40000.

Fig. 4
Fig. 4

Reading error resulting from change in prism index, the instrument having been adjusted correctly at nD=1.70000.

Fig. 5
Fig. 5

Computed error for all scale positions resulting from change in prism angle alone.

Fig. 6
Fig. 6

Reading error resulting from change in prism angle alone, the instrument having been correctly adjusted at nD=1.40000.

Fig. 7
Fig. 7

Reading error resulting from change in prism angle alone, the instrument having been correctly adjusted at nD=1.45000.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

sin i / sin r = μ 2 / μ 1
sin r = μ 1 / μ 2 .
sin γ / sin α = μ 3 / μ 2 ,
sin α = μ 2 sin γ .
sin α = μ 2 sin ( B - sin - 1 μ 1 μ 2 ) ;             α = sin - 1 ( μ 2 sin ( B - sin - 1 μ 1 μ 2 ) ) .