Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Drude, Lehrbuch der Optik, third edition, p. 80.
  2. R. Leiser, Diss. (Halle, 1910).
  3. G. Otterbein, Physik. Zeits. 35, 256 (1934); L. H. Borchert, Physik. Zeits. 39, 156 (1938).
  4. G. Szivessy, Zeits. f. physik. Chemie 26, 326 (1924).
  5. W. Vorländer and R. Walter, Zeits. f. physik. Chemie 118, 1 (1925).
  6. Ch. Sadran, J. de phys. et rad. 7, 263 (1936).
    [Crossref]
  7. Y. Björnståhl, Phil. Mag. 2, 701 (1926).
  8. M. Scherer, Thèses (Paris, 1934), p. 17.
  9. G. Szivessy, Zeits. f. Physik 18, 97 (1923).
    [Crossref]
  10. H. A. Boarse, Phys. Rev. 46, 187 (1936).
    [Crossref]
  11. Y. Björnståhl, Phil. Mag. 42, 352 (1921).
    [Crossref]
  12. Y. Björnståhl, Experimental Studies on the Accidental Double Refraction in Colloids (Upsala, 1924).

1936 (2)

Ch. Sadran, J. de phys. et rad. 7, 263 (1936).
[Crossref]

H. A. Boarse, Phys. Rev. 46, 187 (1936).
[Crossref]

1934 (1)

G. Otterbein, Physik. Zeits. 35, 256 (1934); L. H. Borchert, Physik. Zeits. 39, 156 (1938).

1926 (1)

Y. Björnståhl, Phil. Mag. 2, 701 (1926).

1925 (1)

W. Vorländer and R. Walter, Zeits. f. physik. Chemie 118, 1 (1925).

1924 (1)

G. Szivessy, Zeits. f. physik. Chemie 26, 326 (1924).

1923 (1)

G. Szivessy, Zeits. f. Physik 18, 97 (1923).
[Crossref]

1921 (1)

Y. Björnståhl, Phil. Mag. 42, 352 (1921).
[Crossref]

Björnståhl, Y.

Y. Björnståhl, Phil. Mag. 2, 701 (1926).

Y. Björnståhl, Phil. Mag. 42, 352 (1921).
[Crossref]

Y. Björnståhl, Experimental Studies on the Accidental Double Refraction in Colloids (Upsala, 1924).

Boarse, H. A.

H. A. Boarse, Phys. Rev. 46, 187 (1936).
[Crossref]

Drude, P.

P. Drude, Lehrbuch der Optik, third edition, p. 80.

Leiser, R.

R. Leiser, Diss. (Halle, 1910).

Otterbein, G.

G. Otterbein, Physik. Zeits. 35, 256 (1934); L. H. Borchert, Physik. Zeits. 39, 156 (1938).

Sadran, Ch.

Ch. Sadran, J. de phys. et rad. 7, 263 (1936).
[Crossref]

Scherer, M.

M. Scherer, Thèses (Paris, 1934), p. 17.

Szivessy, G.

G. Szivessy, Zeits. f. physik. Chemie 26, 326 (1924).

G. Szivessy, Zeits. f. Physik 18, 97 (1923).
[Crossref]

Vorländer, W.

W. Vorländer and R. Walter, Zeits. f. physik. Chemie 118, 1 (1925).

Walter, R.

W. Vorländer and R. Walter, Zeits. f. physik. Chemie 118, 1 (1925).

J. de phys. et rad. (1)

Ch. Sadran, J. de phys. et rad. 7, 263 (1936).
[Crossref]

Phil. Mag. (2)

Y. Björnståhl, Phil. Mag. 2, 701 (1926).

Y. Björnståhl, Phil. Mag. 42, 352 (1921).
[Crossref]

Phys. Rev. (1)

H. A. Boarse, Phys. Rev. 46, 187 (1936).
[Crossref]

Physik. Zeits. (1)

G. Otterbein, Physik. Zeits. 35, 256 (1934); L. H. Borchert, Physik. Zeits. 39, 156 (1938).

Zeits. f. Physik (1)

G. Szivessy, Zeits. f. Physik 18, 97 (1923).
[Crossref]

Zeits. f. physik. Chemie (2)

G. Szivessy, Zeits. f. physik. Chemie 26, 326 (1924).

W. Vorländer and R. Walter, Zeits. f. physik. Chemie 118, 1 (1925).

Other (4)

P. Drude, Lehrbuch der Optik, third edition, p. 80.

R. Leiser, Diss. (Halle, 1910).

M. Scherer, Thèses (Paris, 1934), p. 17.

Y. Björnståhl, Experimental Studies on the Accidental Double Refraction in Colloids (Upsala, 1924).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical arrangement for the measurement of accidental double refraction.

Fig. 2
Fig. 2

Method I, inhomogeneously illuminated half-shade.

Fig. 3
Fig. 3

Method I, reflections.

Fig. 4
Fig. 4

Method II.

Fig. 5
Fig. 5

Method II with parallel light, homogenously illuminated half-shade, strong reflections.

Fig. 6
Fig. 6

Illustrating the location of the half-shade.

Fig. 7
Fig. 7

Method III, reflections.

Fig. 8
Fig. 8

Method III.

Fig. 9
Fig. 9

Method III, location of the half-shade in the cell.

Fig. 10
Fig. 10

Method III for a magnetic field.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

H ¯             P ¯ H ¯             P ¯ H ¯             P ¯ a a a
L = i 0 H ¯ P ¯ a 2 = i 0 H ¯ P ¯ a 2 = i 0 H ¯ P ¯ a 2 .
H ¯ = β ¯ a 2 .
B = L / H ¯ = L / β ¯ a 2 .
d L = i 0 ( d H ¯ ) ω ¯ = i 0 ( d H ¯ ) R ¯ 1 / b 2 ,
d L 1 = i 1 ( d H ¯ ) ω ¯ = i 1 ( d H ¯ ) R ¯ 1 / b 2 ,
L = i 0 H ¯ R ¯ 1 / b 2 .
L I = i 0 R ¯ 1 2 / b 2 .
H ( c R 1 - b Z ) / ( b + c ) .
b c R 1 / Z .
L = i 0 ( π 2 / 16 ) ( H 2 Z 2 / c 2 ) ;
L = i 0 π 2 16 Z 2 ( b + c ) 2 ( c R 1 - b Z ) 2 c 2 .
Z = c R 1 / 2 b ;             H = c R 1 / 2 ( b + c )
L I I = i 0 R ¯ 1 2 16 b 2 [ c c + b ] 2 .
L I I = i 0 R ¯ 1 2 / 16 b 2 .
Z = c R 1 / 2 b ,
thus             c R 1 / 2 B < R 1             or             c 2 b .
L I I = i 0 R ¯ 1 2 / 36 b 2 .
L I I I = i 0 R ¯ 1 H ¯ / b 2 ,
L I I I = i 0 R ¯ 1 2 / b 2 .
L = i 0 2 16 H 2 b 2 [ R 1 ( b + x ) - H x b - x ] 2 ;
L = i 0 H ¯ R ¯ 1 / b 2 ;             H ¯ = H 2 π / 4 ;             R ¯ 1 = R 1 2 π / 4 ;
L = i 0 ( π 2 / 16 ) ( H 2 R 1 2 / b 2 ) .
b = ( R 1 + H ) / α .
L I = i 0 ( π 2 / 16 ) ( R 1 2 α 2 / 4 ) .
α = ( Z + H ) / b ,
H R 1 - b α .
L I I = i 0 π 2 16 H 2 Z 2 c 2 = π 2 16 ( R 1 - b α ) 2 R 1 2 α 2 ( 2 R 1 - b α ) 2 .
L = i 0 π 2 16 ( R 1 - b α ) 2 [ α ( b + c ) - R 1 c ] 2             and
L I I = i 0 ( π 2 / 16 ) ( R 1 - b α ) 2 α 2 .
L = i 0 ( π 2 / 16 ) ( Z 2 H 2 / b 2 ) ;             α = ( Z + H ) / b .
Z = R 1 ;             L = i 0 ( π 2 / 16 ) R 1 2 ( α - R 1 / b ) 2 .
H R 1 ;             b 2 R 1 / α .
L I I I = i 0 π 2 16 R 1 2 4 α 2 .
L I I I L I = 1 ;             L I I I L I I = 1 4 [ 2 R 1 - b α R 1 - b α ] 2 .
α = 1 200 ;             b = 80 cm ;             R 1 = 0.8 cm ;             L I I I L I I = 9 4 .
L I I I / L I I = R 1 2 / 4 ( R 1 - b α ) 2 .