Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Raymond T. Birge, Phys. Rev. Supp. 1, 1 (1929).

1929 (1)

Raymond T. Birge, Phys. Rev. Supp. 1, 1 (1929).

Birge, Raymond T.

Raymond T. Birge, Phys. Rev. Supp. 1, 1 (1929).

Phys. Rev. Supp. (1)

Raymond T. Birge, Phys. Rev. Supp. 1, 1 (1929).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The black body distribution of energy plotted to a wave-length scale making λm equal to 1, and Jλ equal to 1 at the maximum. The curve can be reduced to absolute scale for any temperature by using Eqs. (5) and (6).

Fig. 2
Fig. 2

The black body summation curve giving the energy from λ=0 up to any wave-length, given in terms of λm=1.

Fig. 3
Fig. 3

The distribution curves are for equal energies radiated at temperatures between 2000°K and 3400°K. The equilateral hyperbola passing through the maxima of the curves gives Wien’s displacement relation, while the parallel hyperbola tangent to the family of curves gives the conditions for maximum efficiency at any wave-length.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

J λ = 3.697 · 10 8 λ 5 [ exp ( 14317 / λ T ) - 1 ] microwatts per cm 2 per 0.01 μ zone of spectrum.
J λ d ω = 1.176 · 10 8 λ 5 [ exp ( 14317 / λ T ) - 1 ] microwatts per cm 2 per sterdian per 0.01 μ zone of spectrum.
ψ = 4.933 · 10 - 2 λ 5 [ exp ( 14317 / λ T ) - 1 ] microwatts per cm 3 per 0.01 μ zone of spectrum.
d d λ 1 λ 5 [ exp ( 14317 / λ T ) - 1 ] = 0.
λ m T = 2883.6 micron-degrees ,
λ m = 2883.6 / T microns.
J λ m = 1.303 · 10 - 11 T 5 microwatts per cm 2 per 0.01 μ zone of spectrum.
0 J λ d λ = 5.7139 · 10 - 6 T 4 microwatts per cm 2 .
J = σ T 4
0 λ m J λ d λ = 1 4 0 J λ d λ .
J λ J = 6.471 · 10 13 λ 5 [ exp ( 14317 / λ T ) - 1 ] T 4 numeric.
d d T 1 λ 5 [ exp ( 14317 / λ T ) - 1 ] T 4 = 0.
λ e T e = 3652 micron-degrees.
T e = 3652 / λ e degrees.
T e = 1.276 T degrees
J λ e = 2.020 T e microwatts.
0 λ e J λ d λ = 0.418 0 J λ d λ .