Abstract

The limiting sensitivity of an alternating-current system of amplification is considered. The practical limit is determined theoretically and experimentally for measured circuit parameters. A particular circuit using an electrometer-tube and a cesium-antimony cell is shown to be capable of detecting 4.5×10−15 watt in 30 seconds. Data on various input-tubes and photoelectric cells are given.

© 1939 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Johnson and F. B. Llewellyn, Elec. Eng. 53, 1449–1453 (1934).
    [Crossref]
  2. B. A. Kingsbury, Phys. Rev. 38, 1458–1476 (1931).
    [Crossref]
  3. E. Steinke, Zeits. f. Physik 38, 378–403 (1926).
    [Crossref]
  4. F. V. Orbán, Zeits. f. tech. Physik 14, 137–143 (1933).
  5. E. A. Johnson and A. G. Johnson, Phys. Rev. 50, 170 (1936).
    [Crossref]
  6. E. A. Johnson, Rev. Sci. Inst. 9, 263–266 (1938).
    [Crossref]
  7. G. L. Pearson and C. J. Christensen, Bell Sys. Tech. J. 15, 197–223 (1936).
    [Crossref]

1938 (1)

E. A. Johnson, Rev. Sci. Inst. 9, 263–266 (1938).
[Crossref]

1936 (2)

G. L. Pearson and C. J. Christensen, Bell Sys. Tech. J. 15, 197–223 (1936).
[Crossref]

E. A. Johnson and A. G. Johnson, Phys. Rev. 50, 170 (1936).
[Crossref]

1934 (1)

J. B. Johnson and F. B. Llewellyn, Elec. Eng. 53, 1449–1453 (1934).
[Crossref]

1933 (1)

F. V. Orbán, Zeits. f. tech. Physik 14, 137–143 (1933).

1931 (1)

B. A. Kingsbury, Phys. Rev. 38, 1458–1476 (1931).
[Crossref]

1926 (1)

E. Steinke, Zeits. f. Physik 38, 378–403 (1926).
[Crossref]

Christensen, C. J.

G. L. Pearson and C. J. Christensen, Bell Sys. Tech. J. 15, 197–223 (1936).
[Crossref]

Johnson, A. G.

E. A. Johnson and A. G. Johnson, Phys. Rev. 50, 170 (1936).
[Crossref]

Johnson, E. A.

E. A. Johnson, Rev. Sci. Inst. 9, 263–266 (1938).
[Crossref]

E. A. Johnson and A. G. Johnson, Phys. Rev. 50, 170 (1936).
[Crossref]

Johnson, J. B.

J. B. Johnson and F. B. Llewellyn, Elec. Eng. 53, 1449–1453 (1934).
[Crossref]

Kingsbury, B. A.

B. A. Kingsbury, Phys. Rev. 38, 1458–1476 (1931).
[Crossref]

Llewellyn, F. B.

J. B. Johnson and F. B. Llewellyn, Elec. Eng. 53, 1449–1453 (1934).
[Crossref]

Orbán, F. V.

F. V. Orbán, Zeits. f. tech. Physik 14, 137–143 (1933).

Pearson, G. L.

G. L. Pearson and C. J. Christensen, Bell Sys. Tech. J. 15, 197–223 (1936).
[Crossref]

Steinke, E.

E. Steinke, Zeits. f. Physik 38, 378–403 (1926).
[Crossref]

Bell Sys. Tech. J. (1)

G. L. Pearson and C. J. Christensen, Bell Sys. Tech. J. 15, 197–223 (1936).
[Crossref]

Elec. Eng. (1)

J. B. Johnson and F. B. Llewellyn, Elec. Eng. 53, 1449–1453 (1934).
[Crossref]

Phys. Rev. (2)

B. A. Kingsbury, Phys. Rev. 38, 1458–1476 (1931).
[Crossref]

E. A. Johnson and A. G. Johnson, Phys. Rev. 50, 170 (1936).
[Crossref]

Rev. Sci. Inst. (1)

E. A. Johnson, Rev. Sci. Inst. 9, 263–266 (1938).
[Crossref]

Zeits. f. Physik (1)

E. Steinke, Zeits. f. Physik 38, 378–403 (1926).
[Crossref]

Zeits. f. tech. Physik (1)

F. V. Orbán, Zeits. f. tech. Physik 14, 137–143 (1933).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Circuit-diagram of photo-cell amplifier.

Fig. 2
Fig. 2

Variation of amplifier output-current versus input resistance for noise level and for a signal current of 10−14 ampere.

Tables (5)

Tables Icon

Table I Values of tube parameters for various tubes.

Tables Icon

Table II Limiting sensitivity of light detection.

Tables Icon

Table III Factor of merit B of various tubes.

Tables Icon

Table IV Current-sensitivity of photo-cell amplifier-circuit.

Tables Icon

Table V Dark current and granular noise of various photoelectric cells.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E n 2 = 4 K T { ( 1 / 2 π C ) ( tan - 1 [ 2 π R C ( f 2 - f 1 ) / ( 1 + 4 π 2 R 2 C 2 f 1 f 2 ) ] ) × ( 1 + 19.4 I g R ) + R t ( f 2 - f 1 ) ,
E s 2 = I s 2 R 2 / ( 1 + 4 π 2 f o 2 R 2 C 2 ) .
( f 2 - f 1 ) / ( f 1 f 2 ) 1 2 < 1 ,
E n 2 ¯ = 4 K T ( f 2 - f 1 ) × [ R t + ( 1 + 19.4 I g R ) / R C 2 4 π 2 f 1 f 2 ] ,
E s 2 = I s 2 / C 2 4 π 2 f o 2 .
E s 2 / E n 2 ¯ = I s 2 R / 4 K T ( f 2 - f 1 ) × [ 1 + R ( 19.4 I g + R t C 2 4 π 2 f o 2 ) ] ,
E s 2 / E n 2 ¯ = I s 2 / 4 K T ( f 2 - f 1 ) ( 19.4 I g + R t C 2 4 π 2 f o 2 ) .
E s 2 / E n 2 ¯ = I s 2 R / 4 K T ( f 2 - f 1 ) .
T = 3 R × 10 - 11 .
E s = ( 5 λ / ( f 2 - f 1 ) ) 1 2 E n
I 2 s min = 20 K T λ ( 19.4 I g + R t C 2 4 π 2 f o 2 ) ,
I 2 s min = 20 K T λ / R .
I s 2 = A 2 L 2 / 8 ,
Δ L = 8.1 × 10 - 10 [ 1 + R ( 19.4 I g + R t C 2 4 π 2 f o 2 ) ] 1 2 [ λ / R A 2 ] 1 2
= 8.1 × 10 - 10 [ 19.4 I g + R t C 2 4 π 2 f o 2 ) ] 1 2 [ λ / A 2 ] 1 2 1 R [ 19.4 I g + R t C 2 4 π 2 f o 2 ]
= 8.1 × 10 - 10 [ λ / R A 2 ] 1 2 1 R [ 19.4 I g + R t C 2 4 π 2 f o 2 ] .
Δ L = 3.6 × 10 - 9 [ λ L o / A ] 1 2 .
Δ L = 8.1 × 10 - 10 C 1 2 λ / A .
B = 10 - 4 / [ 19.4 I g + R t C 2 4 π 2 f o 2 ] 1 2