Abstract

The present paper contains results of experiments carried out to test the theory of latent-image formation recently proposed by Gurney and Mott. In their theory, these authors have introduced the concept of electrolytic transport of Ag+ ions to account for the nucleation of latent image Ag about the sensitivity specks preexistent on the surface of the grains. The Ag+ ions are supposed to diffuse to the specks under the attraction of electrons trapped there during the exposure to light. The first experiment consisted of a series of intermittent exposures made at liquid air temperature with warm-up periods between flashes. The results indicate that something vital to the photographic process takes place during the warm-up period between exposures. The second experiment consisted of a series of Herschel exposures made under the following temperature conditions: (a) White-light exposure 20°C, Herschel exposure 20°C; (b) white-light exposure 20°C, Herschel exposure −186°C; (c) white-light exposure −186°C, Herschel exposure 20°C; (d) white-light and Herschel exposures both at −186°C; (e) case (d) repeated with warm-up period between the exposures. The results obtained are radically different under the different conditions. Finally, results are presented on reciprocity measurements at temperatures 20°C, −78°C, and −186°C. These results show that the low-intensity reciprocity law failure has disappeared at −78°C and that the high intensity failure has practically disappeared at −186°C. All of the foregoing results are shown to have ready interpretation on the Gurney-Mott picture of latent-image formation.

© 1938 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Webb, J. Opt. Soc. Am. 26, 367 (1936).
    [Crossref]
  2. R. W. Gurney and N. F. Mott, Proc. Roy. Soc. 164, 151 (1938).
    [Crossref]
  3. F. C. Toy, VIIth Internat. Cong. Phot.London, p. 14, 1928. See also W. Lehfeldt, Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 1, 171 (1935).
  4. I. Tamm, Physik. Zeits. Sowjetunion 1, 722 (1932).
  5. T. Svedberg, Phot. J. 62, 183 (1922).
  6. S. E. Sheppard, A. P. H. Trivelli, and R. P. Loveland, J. Frank. Inst. 200, 51 (1925). S. E. Sheppard, A. P. H. Trivelli, and E. P. Wightman, Phot. J. 67, 281 (1927).
    [Crossref]
  7. W. Clark, Phot. J. 48, 1 (1924).
  8. W. Clark and F. C. Toy, Phil. Mag. 44, 352 (1922).
    [Crossref]
  9. S. E. Sheppard, Phot. J. 65, 1 (1925).
  10. W. Clark, Brit. J. Phot. 74, 227 (1927).
  11. G. Glaser and W. Lehfeldt, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 2, 91 (1936).
  12. W. Lehfeldt, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 1, 171 (1935).
  13. C. Tubandt and S. Eggert, Zeits. f. anorg. allgem. Chemie 110, 196 (1920).
    [Crossref]
  14. I. Frenkel, Zeits. f. Physik 35, 652 (1926).
    [Crossref]
  15. W. Jost, J. Chem. Phys. 1, 466 (1933).
    [Crossref]
  16. C. Wagner and J. Beyer, Zeits. f. physik. Chemie 32B, 113 (1936).
  17. W. Lehfeldt, Nachr. Ges. Wiss. Gött., Math. Phys. Kl. 1, 171 (1935).
  18. A. P. H. Trivelli, J. Frank. Inst. 207, 765 (1929).
    [Crossref]
  19. N. F. Mott, Phot. J. Special Number 77, 286 (1938).
  20. W. F. Berg (private communication).
  21. J. H. Webb, J. Opt. Soc. Am. 25, 4 (1935).
    [Crossref]
  22. L. A. Jones, J. Opt. Soc. Am. 7, 305 (1923).
    [Crossref]
  23. W. F. Berg and K. Mendelssohn (private communication).

1938 (2)

R. W. Gurney and N. F. Mott, Proc. Roy. Soc. 164, 151 (1938).
[Crossref]

N. F. Mott, Phot. J. Special Number 77, 286 (1938).

1936 (3)

C. Wagner and J. Beyer, Zeits. f. physik. Chemie 32B, 113 (1936).

J. H. Webb, J. Opt. Soc. Am. 26, 367 (1936).
[Crossref]

G. Glaser and W. Lehfeldt, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 2, 91 (1936).

1935 (3)

W. Lehfeldt, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 1, 171 (1935).

W. Lehfeldt, Nachr. Ges. Wiss. Gött., Math. Phys. Kl. 1, 171 (1935).

J. H. Webb, J. Opt. Soc. Am. 25, 4 (1935).
[Crossref]

1933 (1)

W. Jost, J. Chem. Phys. 1, 466 (1933).
[Crossref]

1932 (1)

I. Tamm, Physik. Zeits. Sowjetunion 1, 722 (1932).

1929 (1)

A. P. H. Trivelli, J. Frank. Inst. 207, 765 (1929).
[Crossref]

1927 (1)

W. Clark, Brit. J. Phot. 74, 227 (1927).

1926 (1)

I. Frenkel, Zeits. f. Physik 35, 652 (1926).
[Crossref]

1925 (2)

S. E. Sheppard, A. P. H. Trivelli, and R. P. Loveland, J. Frank. Inst. 200, 51 (1925). S. E. Sheppard, A. P. H. Trivelli, and E. P. Wightman, Phot. J. 67, 281 (1927).
[Crossref]

S. E. Sheppard, Phot. J. 65, 1 (1925).

1924 (1)

W. Clark, Phot. J. 48, 1 (1924).

1923 (1)

1922 (2)

W. Clark and F. C. Toy, Phil. Mag. 44, 352 (1922).
[Crossref]

T. Svedberg, Phot. J. 62, 183 (1922).

1920 (1)

C. Tubandt and S. Eggert, Zeits. f. anorg. allgem. Chemie 110, 196 (1920).
[Crossref]

Berg, W. F.

W. F. Berg (private communication).

W. F. Berg and K. Mendelssohn (private communication).

Beyer, J.

C. Wagner and J. Beyer, Zeits. f. physik. Chemie 32B, 113 (1936).

Clark, W.

W. Clark, Brit. J. Phot. 74, 227 (1927).

W. Clark, Phot. J. 48, 1 (1924).

W. Clark and F. C. Toy, Phil. Mag. 44, 352 (1922).
[Crossref]

Eggert, S.

C. Tubandt and S. Eggert, Zeits. f. anorg. allgem. Chemie 110, 196 (1920).
[Crossref]

Frenkel, I.

I. Frenkel, Zeits. f. Physik 35, 652 (1926).
[Crossref]

Glaser, G.

G. Glaser and W. Lehfeldt, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 2, 91 (1936).

Gurney, R. W.

R. W. Gurney and N. F. Mott, Proc. Roy. Soc. 164, 151 (1938).
[Crossref]

Jones, L. A.

Jost, W.

W. Jost, J. Chem. Phys. 1, 466 (1933).
[Crossref]

Lehfeldt, W.

G. Glaser and W. Lehfeldt, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 2, 91 (1936).

W. Lehfeldt, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 1, 171 (1935).

W. Lehfeldt, Nachr. Ges. Wiss. Gött., Math. Phys. Kl. 1, 171 (1935).

Loveland, R. P.

S. E. Sheppard, A. P. H. Trivelli, and R. P. Loveland, J. Frank. Inst. 200, 51 (1925). S. E. Sheppard, A. P. H. Trivelli, and E. P. Wightman, Phot. J. 67, 281 (1927).
[Crossref]

Mendelssohn, K.

W. F. Berg and K. Mendelssohn (private communication).

Mott, N. F.

N. F. Mott, Phot. J. Special Number 77, 286 (1938).

R. W. Gurney and N. F. Mott, Proc. Roy. Soc. 164, 151 (1938).
[Crossref]

Sheppard, S. E.

S. E. Sheppard, A. P. H. Trivelli, and R. P. Loveland, J. Frank. Inst. 200, 51 (1925). S. E. Sheppard, A. P. H. Trivelli, and E. P. Wightman, Phot. J. 67, 281 (1927).
[Crossref]

S. E. Sheppard, Phot. J. 65, 1 (1925).

Svedberg, T.

T. Svedberg, Phot. J. 62, 183 (1922).

Tamm, I.

I. Tamm, Physik. Zeits. Sowjetunion 1, 722 (1932).

Toy, F. C.

W. Clark and F. C. Toy, Phil. Mag. 44, 352 (1922).
[Crossref]

F. C. Toy, VIIth Internat. Cong. Phot.London, p. 14, 1928. See also W. Lehfeldt, Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 1, 171 (1935).

Trivelli, A. P. H.

A. P. H. Trivelli, J. Frank. Inst. 207, 765 (1929).
[Crossref]

S. E. Sheppard, A. P. H. Trivelli, and R. P. Loveland, J. Frank. Inst. 200, 51 (1925). S. E. Sheppard, A. P. H. Trivelli, and E. P. Wightman, Phot. J. 67, 281 (1927).
[Crossref]

Tubandt, C.

C. Tubandt and S. Eggert, Zeits. f. anorg. allgem. Chemie 110, 196 (1920).
[Crossref]

Wagner, C.

C. Wagner and J. Beyer, Zeits. f. physik. Chemie 32B, 113 (1936).

Webb, J. H.

Brit. J. Phot. (1)

W. Clark, Brit. J. Phot. 74, 227 (1927).

J. Chem. Phys. (1)

W. Jost, J. Chem. Phys. 1, 466 (1933).
[Crossref]

J. Frank. Inst. (2)

A. P. H. Trivelli, J. Frank. Inst. 207, 765 (1929).
[Crossref]

S. E. Sheppard, A. P. H. Trivelli, and R. P. Loveland, J. Frank. Inst. 200, 51 (1925). S. E. Sheppard, A. P. H. Trivelli, and E. P. Wightman, Phot. J. 67, 281 (1927).
[Crossref]

J. Opt. Soc. Am. (3)

Nachr. Ges. Wiss. Gött., Math. Phys. Kl. (1)

W. Lehfeldt, Nachr. Ges. Wiss. Gött., Math. Phys. Kl. 1, 171 (1935).

Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. (2)

G. Glaser and W. Lehfeldt, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 2, 91 (1936).

W. Lehfeldt, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 1, 171 (1935).

Phil. Mag. (1)

W. Clark and F. C. Toy, Phil. Mag. 44, 352 (1922).
[Crossref]

Phot. J. (3)

S. E. Sheppard, Phot. J. 65, 1 (1925).

W. Clark, Phot. J. 48, 1 (1924).

T. Svedberg, Phot. J. 62, 183 (1922).

Phot. J. Special Number (1)

N. F. Mott, Phot. J. Special Number 77, 286 (1938).

Physik. Zeits. Sowjetunion (1)

I. Tamm, Physik. Zeits. Sowjetunion 1, 722 (1932).

Proc. Roy. Soc. (1)

R. W. Gurney and N. F. Mott, Proc. Roy. Soc. 164, 151 (1938).
[Crossref]

Zeits. f. anorg. allgem. Chemie (1)

C. Tubandt and S. Eggert, Zeits. f. anorg. allgem. Chemie 110, 196 (1920).
[Crossref]

Zeits. f. Physik (1)

I. Frenkel, Zeits. f. Physik 35, 652 (1926).
[Crossref]

Zeits. f. physik. Chemie (1)

C. Wagner and J. Beyer, Zeits. f. physik. Chemie 32B, 113 (1936).

Other (3)

W. F. Berg (private communication).

F. C. Toy, VIIth Internat. Cong. Phot.London, p. 14, 1928. See also W. Lehfeldt, Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 1, 171 (1935).

W. F. Berg and K. Mendelssohn (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Energy level diagram of Ag speck in contact with AgBr.

Fig. 2
Fig. 2

Schematic representation of electronic and electrolytic processes in photographic grain in formation of latent image.

Fig. 3
Fig. 3

Conduction levels of AgBr and Ag2S.

Fig. 4
Fig. 4

Model to illustrate electrolytic conductivity in AgBr.

Fig. 5
Fig. 5

Apparatus for maintaining film at liquid-air temperature during exposure.

Fig. 6
Fig. 6

Curves illustrating effect of low temperature on emulsion sensitivity.

Fig. 7
Fig. 7

Curves illustrating effect of making an interrupted exposure at liquid-air temperature and warming up the emulsion between exposure periods.

Fig. 8
Fig. 8

Curves illustrating the effect on emulsion sensitivity of increased number of interruptions with warm-up periods between exposures.

Fig. 9
Fig. 9

Curves illustrating the normal Herschel effect on a pure AgBr emulsion.

Fig. 10
Fig. 10

Curves illustrating the Herschel effect under varied temperature conditions.

Fig. 11
Fig. 11

Curves illustrating the Herschel effect at liquid-air temperature with warm-up period between white and infra-red exposure.

Fig. 12
Fig. 12

Curve showing relative energies in white-light and infra-red exposures.

Fig. 13
Fig. 13

Reciprocity law failure curves at different temperatures.

Fig. 14
Fig. 14

Reciprocity law failure curves at different temperatures.

Tables (2)

Tables Icon

Table I White-light exposure (tungsten 2920° K).

Tables Icon

Table II Infra-red exposure (tungsten 3100° K).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N T = C e - Q / 2 k T ,