Abstract

Measurements of the effect of temperature variation on the reciprocity failure curves were made for several types of emulsions and for radiation of several different wavelengths. The effect of temperature variation upon emulsion sensitivity is shown to be very strongly dependent upon the intensity level at which the exposures are made. At very low intensities it is found that the speeds of certain emulsions can be increased several fold by lowering the temperature. An analysis of the data suggests a possible manner of division of the reciprocity curves into two component parts which, presumably, correspond to two different modes of utilization of the exposure in the formation of the latent image. A theoretical formulation based on the foregoing analysis yields the Kron-Halm catenary equation for representing the reciprocity failure curves.

© 1935 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. DeW. Abney, Phot. News 28, 315 (1884).
  2. A. Lumière and L. Lumière, Comptes rendus 128, 359 (1899).
  3. J. Precht and A. Schellen, Arch. wiss. Phot. 1, 58 (1899).
  4. G. Dalezki, Zeits. f. wiss. Phot. 18, 233 (1919).
  5. A. Zimmern, Comptes rendus 174, 453 (1922).
  6. E. S. King, Photo-Beacon 17, 267 (1905).
  7. R. J. Wallace, Astrophys. J. 28, 39 (1908).
    [Crossref]
  8. J. Eggert and F. Luft, Veröffent. wiss. Zentral-Lab. Phot. Agfa 2, 9 (1931).
  9. S. E. Sheppard, E. P. Wightman, and R. F. Quirk, J. Phys. Chem. 38, 817 (1934).
    [Crossref]
  10. L. A. Jones, J. Opt. Soc. Am. 7, 305 (1923).
    [Crossref]
  11. W. W. Coblentz, Bull. Bur. Standards 11, 87 (1915).
    [Crossref]
  12. J. H. Webb, J. Opt. Soc. Am. 23, 316 (1933).
    [Crossref]
  13. E. Kron, Publ. Astrophys. Obs. zu Potsdam, No.  67, (1913).
  14. E. Kron, reference 13; J. Halm, Monthly Notices Roy. Astron. Soc. 75, 150 (1915); Monthly Notices Roy. Astron. Soc. 78, 379 (1918); L. A. Jones and E. Huse, J. Opt. Soc. Am. 7, 1079 (1923); Monthly Notices Roy. Astron. Soc. 11, 319 (1925); L. A. Jones, V. C. Hall, and E. Huse, ibid. 12, 321 (1926); L. A. Jones and V. C. Hall, ibid. 13, 443 (1926); L. A. Jones, V. C. Hall, and R. M. Briggs, ibid. 14, 223 (1927).
    [Crossref]
  15. J. H. Webb, J. Opt. Soc. Am. 23, 157 (1933); J. Opt. Soc. Am. 23, 316 (1933).
    [Crossref]
  16. L. Silberstein and J. H. Webb, Phil. Mag. 18, 1 (1934).

1934 (2)

S. E. Sheppard, E. P. Wightman, and R. F. Quirk, J. Phys. Chem. 38, 817 (1934).
[Crossref]

L. Silberstein and J. H. Webb, Phil. Mag. 18, 1 (1934).

1933 (2)

1931 (1)

J. Eggert and F. Luft, Veröffent. wiss. Zentral-Lab. Phot. Agfa 2, 9 (1931).

1923 (1)

1922 (1)

A. Zimmern, Comptes rendus 174, 453 (1922).

1919 (1)

G. Dalezki, Zeits. f. wiss. Phot. 18, 233 (1919).

1915 (1)

W. W. Coblentz, Bull. Bur. Standards 11, 87 (1915).
[Crossref]

1913 (1)

E. Kron, Publ. Astrophys. Obs. zu Potsdam, No.  67, (1913).

1908 (1)

R. J. Wallace, Astrophys. J. 28, 39 (1908).
[Crossref]

1905 (1)

E. S. King, Photo-Beacon 17, 267 (1905).

1899 (2)

A. Lumière and L. Lumière, Comptes rendus 128, 359 (1899).

J. Precht and A. Schellen, Arch. wiss. Phot. 1, 58 (1899).

1884 (1)

W. DeW. Abney, Phot. News 28, 315 (1884).

Abney, W. DeW.

W. DeW. Abney, Phot. News 28, 315 (1884).

Coblentz, W. W.

W. W. Coblentz, Bull. Bur. Standards 11, 87 (1915).
[Crossref]

Dalezki, G.

G. Dalezki, Zeits. f. wiss. Phot. 18, 233 (1919).

Eggert, J.

J. Eggert and F. Luft, Veröffent. wiss. Zentral-Lab. Phot. Agfa 2, 9 (1931).

Jones, L. A.

King, E. S.

E. S. King, Photo-Beacon 17, 267 (1905).

Kron, E.

E. Kron, Publ. Astrophys. Obs. zu Potsdam, No.  67, (1913).

E. Kron, reference 13; J. Halm, Monthly Notices Roy. Astron. Soc. 75, 150 (1915); Monthly Notices Roy. Astron. Soc. 78, 379 (1918); L. A. Jones and E. Huse, J. Opt. Soc. Am. 7, 1079 (1923); Monthly Notices Roy. Astron. Soc. 11, 319 (1925); L. A. Jones, V. C. Hall, and E. Huse, ibid. 12, 321 (1926); L. A. Jones and V. C. Hall, ibid. 13, 443 (1926); L. A. Jones, V. C. Hall, and R. M. Briggs, ibid. 14, 223 (1927).
[Crossref]

Luft, F.

J. Eggert and F. Luft, Veröffent. wiss. Zentral-Lab. Phot. Agfa 2, 9 (1931).

Lumière, A.

A. Lumière and L. Lumière, Comptes rendus 128, 359 (1899).

Lumière, L.

A. Lumière and L. Lumière, Comptes rendus 128, 359 (1899).

Precht, J.

J. Precht and A. Schellen, Arch. wiss. Phot. 1, 58 (1899).

Quirk, R. F.

S. E. Sheppard, E. P. Wightman, and R. F. Quirk, J. Phys. Chem. 38, 817 (1934).
[Crossref]

Schellen, A.

J. Precht and A. Schellen, Arch. wiss. Phot. 1, 58 (1899).

Sheppard, S. E.

S. E. Sheppard, E. P. Wightman, and R. F. Quirk, J. Phys. Chem. 38, 817 (1934).
[Crossref]

Silberstein, L.

L. Silberstein and J. H. Webb, Phil. Mag. 18, 1 (1934).

Wallace, R. J.

R. J. Wallace, Astrophys. J. 28, 39 (1908).
[Crossref]

Webb, J. H.

Wightman, E. P.

S. E. Sheppard, E. P. Wightman, and R. F. Quirk, J. Phys. Chem. 38, 817 (1934).
[Crossref]

Zimmern, A.

A. Zimmern, Comptes rendus 174, 453 (1922).

Arch. wiss. Phot. (1)

J. Precht and A. Schellen, Arch. wiss. Phot. 1, 58 (1899).

Astrophys. J. (1)

R. J. Wallace, Astrophys. J. 28, 39 (1908).
[Crossref]

Bull. Bur. Standards (1)

W. W. Coblentz, Bull. Bur. Standards 11, 87 (1915).
[Crossref]

Comptes rendus (2)

A. Zimmern, Comptes rendus 174, 453 (1922).

A. Lumière and L. Lumière, Comptes rendus 128, 359 (1899).

J. Opt. Soc. Am. (3)

J. Phys. Chem. (1)

S. E. Sheppard, E. P. Wightman, and R. F. Quirk, J. Phys. Chem. 38, 817 (1934).
[Crossref]

Phil. Mag. (1)

L. Silberstein and J. H. Webb, Phil. Mag. 18, 1 (1934).

Phot. News (1)

W. DeW. Abney, Phot. News 28, 315 (1884).

Photo-Beacon (1)

E. S. King, Photo-Beacon 17, 267 (1905).

Publ. Astrophys. Obs. zu Potsdam (1)

E. Kron, Publ. Astrophys. Obs. zu Potsdam, No.  67, (1913).

Veröffent. wiss. Zentral-Lab. Phot. Agfa (1)

J. Eggert and F. Luft, Veröffent. wiss. Zentral-Lab. Phot. Agfa 2, 9 (1931).

Zeits. f. wiss. Phot. (1)

G. Dalezki, Zeits. f. wiss. Phot. 18, 233 (1919).

Other (1)

E. Kron, reference 13; J. Halm, Monthly Notices Roy. Astron. Soc. 75, 150 (1915); Monthly Notices Roy. Astron. Soc. 78, 379 (1918); L. A. Jones and E. Huse, J. Opt. Soc. Am. 7, 1079 (1923); Monthly Notices Roy. Astron. Soc. 11, 319 (1925); L. A. Jones, V. C. Hall, and E. Huse, ibid. 12, 321 (1926); L. A. Jones and V. C. Hall, ibid. 13, 443 (1926); L. A. Jones, V. C. Hall, and R. M. Briggs, ibid. 14, 223 (1927).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Apparatus for controlling the temperature of photographic film during exposure.

Fig. 2
Fig. 2

Relative spectral energy curve of emulsion I, for density 1.0.

Fig. 3
Fig. 3

Variation of the reciprocity characteristic with temperature for emulsion I.

Fig. 4
Fig. 4

Variation of the reciprocity characteristic with temperature for emulsion II.

Fig. 5
Fig. 5

Variation of the reciprocity characteristic with temperature for emulsion III.

Fig. 6
Fig. 6

Variation of the reciprocity characteristic of emulsion I with temperature, for radiation of wavelength 3650A.

Fig. 7
Fig. 7

Variation of the reciprocity characteristic of emulsion I with temperature, for radiation of wavelength 5460A.

Fig. 8
Fig. 8

Temperature-log exposure curves for emulsions I, II and III for radiation of wavelength 4360A.

Fig. 9
Fig. 9

Temperature-log exposure curves for emulsion I, for radiation of wavelength 3650A, 4360A and 5460A.

Fig. 10
Fig. 10

Temperature coefficient of sensitivity at different wavelengths.

Fig. 11
Fig. 11

Illustrating the equality in shape of the reciprocity characteristics for different wavelengths, over a wide range of temperatures.

Fig. 12
Fig. 12

Illustrating the manner of subdivision of the reciprocity characteristic into two component parts.

Fig. 13
Fig. 13

Curves showing the amount of exposure used in the reaction CD as a function of temperature.

Fig. 14
Fig. 14

Construction to illustrate the number of quanta actually utilized in the second component of exposure.

Fig. 15
Fig. 15

Intermittency effect curves, at different temperatures, showing critical frequency of flash. (a) Curve for −75°C; (b) curve for 20°C.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

log I T = log α - β ( t ° ) ,
I T = α e - β t ° ,
log ( I T ) 20 ° C = log [ ( I T ) A B + ( I T ) C D ] .
log ( I T ) A B = log A + B log I ,
log ( I T ) C D = log C - D log I ,
log I T = log [ ( I T ) A B + ( I T ) C D ] .
log I T = log ( A I B + C I - D ) .
d ( log I T ) d I = [ B A I - B - 1 - D C I - D - 1 A I B + C I - D ] I = I 0 = 0 ,
A / C = ( D / B ) I 0 - D - B .
log I 0 T 0 = log ( A I 0 B + C I 0 - D )
log I T I 0 T 0 = log ( A / C ) I B + I - D ( A / C ) I 0 B + I 0 - D .
log I T I 0 T 0 = log B D + B [ D B ( I I 0 ) B + ( I I 0 ) - D ]
log I T = log D D + B I 0 t 0 + B log I I 0 ,
f c = ( 1 / x 0 ) n a ,
f c = ( 1 / x 0 ) n a .
( f c ) 20 ° C / ( f c ) - 75 ° C = 4 / 0.25 = 16.
( f c ) 1 / ( f c ) 2 = 1 n 1 / 2 n 2
2 1 = n 1 ( f c ) 2 n 2 ( f c ) 1 = 11.1 × 10 8 2.8 × 10 8 4 0.25 = 63.
1 = ( f c ) 1 n 1 a ( 1 / x 0 ) = 0.25 11.1 × 10 8 × 0.5 × 10 - 8 × 2.5 = 0.018 ,
2 = ( f c ) 2 n 2 a ( 1 / x 0 ) = 4 2.8 × 10 8 × 0.5 × 10 - 8 × 2.5 = 1.14.