Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Baker, “On the Validity of Talbot’s Law for the Photographic Plate,” Proc. Opt. Soc. Convention, 238, Part  I, 1926. A. E. Weber, “Über die Anwendung des rotierenden Sektors zur photographischen Photometrie,” Ann. d. Physik 45, 801 (1914). F. Eckert and R. Pummerer, “Photographische Spektral-photometrie der Absorpionspektren von Farbstoffen,” Zeits. f. physik. Chemie 87, 605 (1914). K. S. Gibson, H. J. McNicholas, E. P. T. Tyndall, M. K. Frehafer, and W. E. Mathewson, “The Spectral Transmissive Properties of Dyes,” Bur. Stand. Sci. Pap. 18, No. 440, 121 (1923). F. Twyman and F. Simeon, “The Logarithmic Wedge Sector and Its Use in Quantitative Spectrum Analysis,” Trans. Opt. Soc. (London) 31, 169 (1929–30). F. Twyman and A. Harvey, “The Validity of the Schwarzschild Relation as Applied to the Use of the Logarithmic Sector,” Trans. Opt. Soc. (London) 33, 1 (1931–32). H. E. Howe, “On a Modification of the Hilger Sector Photometer Method for Measuring Ultra-Violet Absorption and Its Application in the Case of Certain Derivatives of Fluoran,” Phys. Rev. 8, 674 (1916). B. O’Brien, “Photographic Spectral Energy Measurement with a Spiral Aperture Disc,” Phys. Rev. 33, 640 (1929). B. O’Brien and E. Dickerman, “Intermittent Exposure in Photographic Spectrophotometry Over Wide Intensity Ranges,” Phys. Rev. 37, 471 (1931). B. O’Brien and V. L. Parks, “Photographic Reciprocity and Intermittency Defects Near the Long Wave-length Limit of Plate Sensitivity,” Phys. Rev. 41, 387 (1932).
    [Crossref]
  2. L. A. Jones and E. Huse, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1079 (1923); J. Opt. Soc. Am. and Rev. Sci. Inst. 11, 319 (1925). L. A. Jones, E. Huse, and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 12, 321 (1926). L. A. Jones and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 443 (1926). L. A. Jones, V. C. Hall, and R. M. Briggs, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 223 (1927).
    [Crossref]
  3. L. A. Jones, “A Special Sensitometer for the Study of the Photographic Reciprocity Law,” J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 305 (1923).
    [Crossref]
  4. W. W. Coblentz, “Measurements on Standards of Radiation in Absolute Value,” Bur. Stand. Pap. 11, 87 (1915).
    [Crossref]
  5. W. Clark, “Standard Development,” Phot. J. 49, 76 (1925).
  6. Leonard B. Loeb, Nature of a Gas, J. Wiley & Son, New York, 1931, p. 68. Leigh Page, Introduction to Theoretical Physics, D. Van Nostrand, New York, 1st edition, 1928, p. 306.
  7. Consistent small experimental discrepancies between the effects of intermittent and continuous exposures have been reported by E. A. Baker (reference 1) and B. O’Brien (reference 1) and it is thought that these discrepancies are attributable to this cause.

1926 (1)

E. A. Baker, “On the Validity of Talbot’s Law for the Photographic Plate,” Proc. Opt. Soc. Convention, 238, Part  I, 1926. A. E. Weber, “Über die Anwendung des rotierenden Sektors zur photographischen Photometrie,” Ann. d. Physik 45, 801 (1914). F. Eckert and R. Pummerer, “Photographische Spektral-photometrie der Absorpionspektren von Farbstoffen,” Zeits. f. physik. Chemie 87, 605 (1914). K. S. Gibson, H. J. McNicholas, E. P. T. Tyndall, M. K. Frehafer, and W. E. Mathewson, “The Spectral Transmissive Properties of Dyes,” Bur. Stand. Sci. Pap. 18, No. 440, 121 (1923). F. Twyman and F. Simeon, “The Logarithmic Wedge Sector and Its Use in Quantitative Spectrum Analysis,” Trans. Opt. Soc. (London) 31, 169 (1929–30). F. Twyman and A. Harvey, “The Validity of the Schwarzschild Relation as Applied to the Use of the Logarithmic Sector,” Trans. Opt. Soc. (London) 33, 1 (1931–32). H. E. Howe, “On a Modification of the Hilger Sector Photometer Method for Measuring Ultra-Violet Absorption and Its Application in the Case of Certain Derivatives of Fluoran,” Phys. Rev. 8, 674 (1916). B. O’Brien, “Photographic Spectral Energy Measurement with a Spiral Aperture Disc,” Phys. Rev. 33, 640 (1929). B. O’Brien and E. Dickerman, “Intermittent Exposure in Photographic Spectrophotometry Over Wide Intensity Ranges,” Phys. Rev. 37, 471 (1931). B. O’Brien and V. L. Parks, “Photographic Reciprocity and Intermittency Defects Near the Long Wave-length Limit of Plate Sensitivity,” Phys. Rev. 41, 387 (1932).
[Crossref]

1925 (1)

W. Clark, “Standard Development,” Phot. J. 49, 76 (1925).

1923 (2)

L. A. Jones and E. Huse, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1079 (1923); J. Opt. Soc. Am. and Rev. Sci. Inst. 11, 319 (1925). L. A. Jones, E. Huse, and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 12, 321 (1926). L. A. Jones and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 443 (1926). L. A. Jones, V. C. Hall, and R. M. Briggs, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 223 (1927).
[Crossref]

L. A. Jones, “A Special Sensitometer for the Study of the Photographic Reciprocity Law,” J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 305 (1923).
[Crossref]

1915 (1)

W. W. Coblentz, “Measurements on Standards of Radiation in Absolute Value,” Bur. Stand. Pap. 11, 87 (1915).
[Crossref]

Baker, E. A.

E. A. Baker, “On the Validity of Talbot’s Law for the Photographic Plate,” Proc. Opt. Soc. Convention, 238, Part  I, 1926. A. E. Weber, “Über die Anwendung des rotierenden Sektors zur photographischen Photometrie,” Ann. d. Physik 45, 801 (1914). F. Eckert and R. Pummerer, “Photographische Spektral-photometrie der Absorpionspektren von Farbstoffen,” Zeits. f. physik. Chemie 87, 605 (1914). K. S. Gibson, H. J. McNicholas, E. P. T. Tyndall, M. K. Frehafer, and W. E. Mathewson, “The Spectral Transmissive Properties of Dyes,” Bur. Stand. Sci. Pap. 18, No. 440, 121 (1923). F. Twyman and F. Simeon, “The Logarithmic Wedge Sector and Its Use in Quantitative Spectrum Analysis,” Trans. Opt. Soc. (London) 31, 169 (1929–30). F. Twyman and A. Harvey, “The Validity of the Schwarzschild Relation as Applied to the Use of the Logarithmic Sector,” Trans. Opt. Soc. (London) 33, 1 (1931–32). H. E. Howe, “On a Modification of the Hilger Sector Photometer Method for Measuring Ultra-Violet Absorption and Its Application in the Case of Certain Derivatives of Fluoran,” Phys. Rev. 8, 674 (1916). B. O’Brien, “Photographic Spectral Energy Measurement with a Spiral Aperture Disc,” Phys. Rev. 33, 640 (1929). B. O’Brien and E. Dickerman, “Intermittent Exposure in Photographic Spectrophotometry Over Wide Intensity Ranges,” Phys. Rev. 37, 471 (1931). B. O’Brien and V. L. Parks, “Photographic Reciprocity and Intermittency Defects Near the Long Wave-length Limit of Plate Sensitivity,” Phys. Rev. 41, 387 (1932).
[Crossref]

Consistent small experimental discrepancies between the effects of intermittent and continuous exposures have been reported by E. A. Baker (reference 1) and B. O’Brien (reference 1) and it is thought that these discrepancies are attributable to this cause.

Clark, W.

W. Clark, “Standard Development,” Phot. J. 49, 76 (1925).

Coblentz, W. W.

W. W. Coblentz, “Measurements on Standards of Radiation in Absolute Value,” Bur. Stand. Pap. 11, 87 (1915).
[Crossref]

Huse, E.

L. A. Jones and E. Huse, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1079 (1923); J. Opt. Soc. Am. and Rev. Sci. Inst. 11, 319 (1925). L. A. Jones, E. Huse, and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 12, 321 (1926). L. A. Jones and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 443 (1926). L. A. Jones, V. C. Hall, and R. M. Briggs, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 223 (1927).
[Crossref]

Jones, L. A.

L. A. Jones, “A Special Sensitometer for the Study of the Photographic Reciprocity Law,” J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 305 (1923).
[Crossref]

L. A. Jones and E. Huse, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1079 (1923); J. Opt. Soc. Am. and Rev. Sci. Inst. 11, 319 (1925). L. A. Jones, E. Huse, and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 12, 321 (1926). L. A. Jones and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 443 (1926). L. A. Jones, V. C. Hall, and R. M. Briggs, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 223 (1927).
[Crossref]

Loeb, Leonard B.

Leonard B. Loeb, Nature of a Gas, J. Wiley & Son, New York, 1931, p. 68. Leigh Page, Introduction to Theoretical Physics, D. Van Nostrand, New York, 1st edition, 1928, p. 306.

O’Brien, B.

Consistent small experimental discrepancies between the effects of intermittent and continuous exposures have been reported by E. A. Baker (reference 1) and B. O’Brien (reference 1) and it is thought that these discrepancies are attributable to this cause.

Bur. Stand. Pap. (1)

W. W. Coblentz, “Measurements on Standards of Radiation in Absolute Value,” Bur. Stand. Pap. 11, 87 (1915).
[Crossref]

J. Opt. Soc. Am. and Rev. Sci. Inst. (2)

L. A. Jones and E. Huse, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1079 (1923); J. Opt. Soc. Am. and Rev. Sci. Inst. 11, 319 (1925). L. A. Jones, E. Huse, and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 12, 321 (1926). L. A. Jones and V. C. Hall, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 443 (1926). L. A. Jones, V. C. Hall, and R. M. Briggs, “On the Relation between Time and Intensity in Photographic Exposure,” J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 223 (1927).
[Crossref]

L. A. Jones, “A Special Sensitometer for the Study of the Photographic Reciprocity Law,” J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 305 (1923).
[Crossref]

Phot. J. (1)

W. Clark, “Standard Development,” Phot. J. 49, 76 (1925).

Proc. Opt. Soc. Convention (1)

E. A. Baker, “On the Validity of Talbot’s Law for the Photographic Plate,” Proc. Opt. Soc. Convention, 238, Part  I, 1926. A. E. Weber, “Über die Anwendung des rotierenden Sektors zur photographischen Photometrie,” Ann. d. Physik 45, 801 (1914). F. Eckert and R. Pummerer, “Photographische Spektral-photometrie der Absorpionspektren von Farbstoffen,” Zeits. f. physik. Chemie 87, 605 (1914). K. S. Gibson, H. J. McNicholas, E. P. T. Tyndall, M. K. Frehafer, and W. E. Mathewson, “The Spectral Transmissive Properties of Dyes,” Bur. Stand. Sci. Pap. 18, No. 440, 121 (1923). F. Twyman and F. Simeon, “The Logarithmic Wedge Sector and Its Use in Quantitative Spectrum Analysis,” Trans. Opt. Soc. (London) 31, 169 (1929–30). F. Twyman and A. Harvey, “The Validity of the Schwarzschild Relation as Applied to the Use of the Logarithmic Sector,” Trans. Opt. Soc. (London) 33, 1 (1931–32). H. E. Howe, “On a Modification of the Hilger Sector Photometer Method for Measuring Ultra-Violet Absorption and Its Application in the Case of Certain Derivatives of Fluoran,” Phys. Rev. 8, 674 (1916). B. O’Brien, “Photographic Spectral Energy Measurement with a Spiral Aperture Disc,” Phys. Rev. 33, 640 (1929). B. O’Brien and E. Dickerman, “Intermittent Exposure in Photographic Spectrophotometry Over Wide Intensity Ranges,” Phys. Rev. 37, 471 (1931). B. O’Brien and V. L. Parks, “Photographic Reciprocity and Intermittency Defects Near the Long Wave-length Limit of Plate Sensitivity,” Phys. Rev. 41, 387 (1932).
[Crossref]

Other (2)

Leonard B. Loeb, Nature of a Gas, J. Wiley & Son, New York, 1931, p. 68. Leigh Page, Introduction to Theoretical Physics, D. Van Nostrand, New York, 1st edition, 1928, p. 306.

Consistent small experimental discrepancies between the effects of intermittent and continuous exposures have been reported by E. A. Baker (reference 1) and B. O’Brien (reference 1) and it is thought that these discrepancies are attributable to this cause.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sector for interrupting light beam.

Fig. 2
Fig. 2

Transmission curves for Wratten filters No. 0 and No. 3.

Fig. 3
Fig. 3

Characteristic curves.

Fig. 4
Fig. 4

Reciprocity curve.

Fig. 5
Fig. 5

Reciprocity law failure curves.

Fig. 6
Fig. 6

The intermittency effect compared with the reciprocity law failure.

Fig. 7
Fig. 7

Effect of frequency of flash on intermittency effect.

Fig. 8
Fig. 8

Effect of frequency of flash on intermittency effect.

Fig. 9
Fig. 9

Effect of frequency of flash on intermittency effect

Fig. 10
Fig. 10

Distribution of quanta in time.

Fig. 11
Fig. 11

Grain size frequency distribution for Emulsions I and II.

Fig. 12
Fig. 12

Grain size frequency distribution for Emulsion III.

Fig. 13
Fig. 13

Grain size frequency distribution for Emulsion IV.

Tables (3)

Tables Icon

Table I Size of area on photographic grain effective in receiving quanta in exposure.

Tables Icon

Table II Number of quanta required to produce developability of photographic grain. (Density=1.0.)

Tables Icon

Table III Rate of reception of quanta by photographic grains in low intensity exposures. (Density=1.0.)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = 8.7 × 10 10 quanta / cm 2 / sec.
d n = N e - t / t ¯ d t / t .
d n = N e - e log t / t ¯ e log t / t ¯ d ( log t / t ¯ ) .
f = ρ ( I ab x q ) ρ I av .