Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Maxwell, Scientific Papers, Vol. 1, page 68.
  2. L. N. G. Filon, On the Graphical Determination of Stresses from Photoelastic Observations, Engineering, Oct.19, 1923.
  3. Neumann, “Die Gesetze der Doppelbrechung des Lichtes in comprimierten oder ungleichförmig erwärmten unkrystallinischen Körpern,” 1841, Gesammelte Werke, Bd. III, 1912. Teubner, Leipzig.
  4. E. Mach, “Die Doppelbrechung des Glases durch Druck (Optisch-akustische Versuche, Prag, 1873, J. G. Calve’sche Buchhandlung, pages 1 to 25. Also Pogg. Ann., t. CXLVI, p 313; 1872.
  5. W. Vogt, Wied. Ann.,  15, p. 497, 1882.
    [CrossRef]
  6. J. Kerr, Phil. Mag.,  26, Oct.1883.
  7. Fr. Pockels, Bemerkung über das optische Verhalten des comprimierte Glasses, Wied. Ann.,  37, p. 389, 1889.
  8. C. Wilson, “The influence of surface loading on the flexure of beams,” Phil. Mag. Series V, vol.  XXXII, p. 481–503; 1891.
    [CrossRef]
  9. In preparing this paper, the author has made free abstracts of material and figures, by special authorization, from H. Favre’s thesis on “Sur Une Nouvelle Méthode Optique de Détermination des Tensions Intérieures,” published in the Revue Optique Théorique et Instrumentale, Paris, 8 (1929), p. 193–213, 241–261, 289–307.
  10. Bouasse, “Cours de Physique,” p. 355 et suiv. 1925. Also Mascart, “Traité d’Optique.” Paris, 1891, II. p. 239.
  11. Mascart, “Traité d’optique,” Vol. 2, p. 240.
  12. Gauss: Theoria combinationis observationum erroribus minimis obnoxiae, (Gottingae, 1823).
  13. Zehnder, ZS. für Instrumentehkunde, No.  11, 1891, p. 275. Mach: ZS. für Instr., No.  12, 1892, p. 89, and Wiener Berichte, No. 107, p. 851.
  14. Pigeaud, “Résistance des Materiaux et Elasticité, 1920, p. 718, Paris.
  15. The photoelastic apparatus of the “Laboratoire de Photoélasticité de l’Ecole Polytechnique Fédérale de Zurich,” of which a description is given in this paper, was designed by Dr. H. Favre and built by the firm Schiltknecht, Zurick.

1925 (1)

Bouasse, “Cours de Physique,” p. 355 et suiv. 1925. Also Mascart, “Traité d’Optique.” Paris, 1891, II. p. 239.

1923 (1)

L. N. G. Filon, On the Graphical Determination of Stresses from Photoelastic Observations, Engineering, Oct.19, 1923.

1891 (2)

Zehnder, ZS. für Instrumentehkunde, No.  11, 1891, p. 275. Mach: ZS. für Instr., No.  12, 1892, p. 89, and Wiener Berichte, No. 107, p. 851.

C. Wilson, “The influence of surface loading on the flexure of beams,” Phil. Mag. Series V, vol.  XXXII, p. 481–503; 1891.
[CrossRef]

1889 (1)

Fr. Pockels, Bemerkung über das optische Verhalten des comprimierte Glasses, Wied. Ann.,  37, p. 389, 1889.

1883 (1)

J. Kerr, Phil. Mag.,  26, Oct.1883.

1882 (1)

W. Vogt, Wied. Ann.,  15, p. 497, 1882.
[CrossRef]

1841 (1)

Neumann, “Die Gesetze der Doppelbrechung des Lichtes in comprimierten oder ungleichförmig erwärmten unkrystallinischen Körpern,” 1841, Gesammelte Werke, Bd. III, 1912. Teubner, Leipzig.

Bouasse,

Bouasse, “Cours de Physique,” p. 355 et suiv. 1925. Also Mascart, “Traité d’Optique.” Paris, 1891, II. p. 239.

Favre, H.

In preparing this paper, the author has made free abstracts of material and figures, by special authorization, from H. Favre’s thesis on “Sur Une Nouvelle Méthode Optique de Détermination des Tensions Intérieures,” published in the Revue Optique Théorique et Instrumentale, Paris, 8 (1929), p. 193–213, 241–261, 289–307.

Filon, L. N. G.

L. N. G. Filon, On the Graphical Determination of Stresses from Photoelastic Observations, Engineering, Oct.19, 1923.

Gauss,

Gauss: Theoria combinationis observationum erroribus minimis obnoxiae, (Gottingae, 1823).

Kerr, J.

J. Kerr, Phil. Mag.,  26, Oct.1883.

Mach, E.

E. Mach, “Die Doppelbrechung des Glases durch Druck (Optisch-akustische Versuche, Prag, 1873, J. G. Calve’sche Buchhandlung, pages 1 to 25. Also Pogg. Ann., t. CXLVI, p 313; 1872.

Mascart,

Mascart, “Traité d’optique,” Vol. 2, p. 240.

Maxwell, C.

C. Maxwell, Scientific Papers, Vol. 1, page 68.

Neumann,

Neumann, “Die Gesetze der Doppelbrechung des Lichtes in comprimierten oder ungleichförmig erwärmten unkrystallinischen Körpern,” 1841, Gesammelte Werke, Bd. III, 1912. Teubner, Leipzig.

Pigeaud,

Pigeaud, “Résistance des Materiaux et Elasticité, 1920, p. 718, Paris.

Pockels, Fr.

Fr. Pockels, Bemerkung über das optische Verhalten des comprimierte Glasses, Wied. Ann.,  37, p. 389, 1889.

Vogt, W.

W. Vogt, Wied. Ann.,  15, p. 497, 1882.
[CrossRef]

Wilson, C.

C. Wilson, “The influence of surface loading on the flexure of beams,” Phil. Mag. Series V, vol.  XXXII, p. 481–503; 1891.
[CrossRef]

Zehnder,

Zehnder, ZS. für Instrumentehkunde, No.  11, 1891, p. 275. Mach: ZS. für Instr., No.  12, 1892, p. 89, and Wiener Berichte, No. 107, p. 851.

Cours de Physique (1)

Bouasse, “Cours de Physique,” p. 355 et suiv. 1925. Also Mascart, “Traité d’Optique.” Paris, 1891, II. p. 239.

Die Gesetze der Doppelbrechung des Lichtes in comprimierten oder ungleichförmig erwärmten unkrystallinischen Körpern (1)

Neumann, “Die Gesetze der Doppelbrechung des Lichtes in comprimierten oder ungleichförmig erwärmten unkrystallinischen Körpern,” 1841, Gesammelte Werke, Bd. III, 1912. Teubner, Leipzig.

Engineering (1)

L. N. G. Filon, On the Graphical Determination of Stresses from Photoelastic Observations, Engineering, Oct.19, 1923.

Phil. Mag. (1)

J. Kerr, Phil. Mag.,  26, Oct.1883.

Phil. Mag. Series V (1)

C. Wilson, “The influence of surface loading on the flexure of beams,” Phil. Mag. Series V, vol.  XXXII, p. 481–503; 1891.
[CrossRef]

Wied. Ann. (2)

Fr. Pockels, Bemerkung über das optische Verhalten des comprimierte Glasses, Wied. Ann.,  37, p. 389, 1889.

W. Vogt, Wied. Ann.,  15, p. 497, 1882.
[CrossRef]

ZS. für Instrumentehkunde (1)

Zehnder, ZS. für Instrumentehkunde, No.  11, 1891, p. 275. Mach: ZS. für Instr., No.  12, 1892, p. 89, and Wiener Berichte, No. 107, p. 851.

Other (7)

Pigeaud, “Résistance des Materiaux et Elasticité, 1920, p. 718, Paris.

The photoelastic apparatus of the “Laboratoire de Photoélasticité de l’Ecole Polytechnique Fédérale de Zurich,” of which a description is given in this paper, was designed by Dr. H. Favre and built by the firm Schiltknecht, Zurick.

Mascart, “Traité d’optique,” Vol. 2, p. 240.

Gauss: Theoria combinationis observationum erroribus minimis obnoxiae, (Gottingae, 1823).

In preparing this paper, the author has made free abstracts of material and figures, by special authorization, from H. Favre’s thesis on “Sur Une Nouvelle Méthode Optique de Détermination des Tensions Intérieures,” published in the Revue Optique Théorique et Instrumentale, Paris, 8 (1929), p. 193–213, 241–261, 289–307.

C. Maxwell, Scientific Papers, Vol. 1, page 68.

E. Mach, “Die Doppelbrechung des Glases durch Druck (Optisch-akustische Versuche, Prag, 1873, J. G. Calve’sche Buchhandlung, pages 1 to 25. Also Pogg. Ann., t. CXLVI, p 313; 1872.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

δ 1 = a t p + b t q ,
δ 2 = b t p + a t q
δ 1 - δ 2 = δ 3 = c ( p - q ) t
δ 1 = f 1 ( p , q )     and     δ 2 = f 2 ( p , q ) ;
δ 1 = f 1 ( p , q ) = f 1 ( 0 , 0 ) + 1 1 ( δ f 1 ( 0 , 0 ) δ p p + δ f 1 ( 0 , 0 ) δ q q ) .
δ 1 = δ f 1 ( 0 , 0 ) δ p p + δ f 1 ( 0 , 0 ) δ q q .
δ 1 = a p + b q .
n - n 1 = n [ β v ϵ 1 + α v ( ϵ 2 + ϵ 3 ) ]
n - n 2 = n [ β v ϵ 2 + α v ( ϵ 3 + ϵ 1 ) ] ,
n - n 3 = n [ β v ϵ 3 + α v ( ϵ 1 + ϵ 2 ) ] .
ϵ 1 = 1 E ( p - q m ) ,             ϵ 2 = 1 E ( q - p m )     and     ϵ 3 = 1 m E ( p + q ) ,
L = ( n - 1 ) t .
δ 1 = - d L 1 = ( n - 1 ) d t + t · d n .
d t = ϵ 3 t ,     and     d n = n 1 - n = - n [ β v ϵ 1 + α v ( ϵ 2 + ϵ 3 ) ] ,
δ 1 = t 1 E [ ( n - 1 ) 1 m + n β v - 2 n m α v ] · p + t 1 E [ ( n - 1 ) 1 m + ( 1 - 1 m ) n α v - n m β v ] · q .
δ 2 = t 1 E [ ( n - 1 ) 1 m + ( 1 - 1 m ) n α v - n m β v ] p + t 1 E [ ( n - 1 ) 1 m + n β v - 2 n m α v ] q .
δ 1 = t ( a p + b q )     and     δ 2 = t ( b p + a q ) .
δ 1 + v 1 = t ( a p + b q ) δ 2 + v 2 = t ( b p + a q ) , δ 3 + v 3 = t ( p - q ) c , }
δ ( p v 2 ) δ p = 0 ,             δ ( p v 2 ) d q = 0.
p = R 11 δ 1 + R 21 δ 2 + R 31 δ 3 , q = R 12 δ 1 + R 22 δ 2 + R 32 δ 3 , }
μ p = ± θ 1 ( δ 1 - δ 2 - δ 3 ) , μ q = ± θ 2 ( δ 1 - δ 2 - δ 3 ) . }
R 11 = a ( 1 p 1 + 1 p 3 ) - b ( 1 p 2 ) t c ( a + b ) [ 1 p ] ,             R 21 = a ( 1 p 1 ) - b ( 1 p 1 + 1 p 3 ) t c ( a + b ) [ 1 p ] , R 31 = a ( 1 p 1 ) + b ( 1 p 2 ) t c ( a + b ) [ 1 p ] , R 12 = a ( 1 p 2 ) - b ( 1 p 2 + 1 p 3 ) t c ( a + b ) [ 1 p ] ,             R 22 = a ( 1 p 1 + 1 p 3 ) - b ( 1 p 1 ) t c ( a + b ) [ 1 p ] , R 32 = - a ( 1 p 2 ) - b ( 1 p 1 ) t c ( a + b ) [ 1 p ] . θ 1 = p 1 b 2 + p 2 a 2 + p 3 c 2 t c ( a + b ) [ 1 p ] p 1 p 2 p 3 ,             θ 2 = p 1 a 2 + p 2 b 2 + p 3 c 2 t c ( a + b ) [ 1 p ] p 1 p 2 p 3 .
[ 1 p ] = 1 p 1 + 1 p 2 + 1 p 3 .
a = δ 1 / t p ,             b = δ 2 / t p     and     c = δ 3 / t p .
a = + 0.03601 ± 0.00014 λ ,             b = + 0.08530 ± 0.00014 λ ,             c = - 0.04929 ± 0.00003 λ .
μ δ 1 = ± 0.0282 λ ,     μ δ 2 = ± 0.0282 λ     and     μ δ 3 = ± 0.0030 λ .