Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Phys. Rev. 8, 470; 1916.
    [CrossRef]
  2. ZS. f Tech. Phys. 6, 317; 1925.
  3. ZS. f. Tech. Phys. 9, 186; 1928.
  4. I. Langmuir, S. MacLane, and K. Blodgett, Phys. Rev. 35, 478; 1930.
    [CrossRef]
  5. I. Langmuir, Phys. Rev. 8, 149; 1916.
    [CrossRef]
  6. W. E. Forsythe, Astrophys. J. 61, 146; 1925.
    [CrossRef]
  7. W. E. Forsythe, loc. cit.
  8. I. Langmuir, Phys. Rev. 2, 329; 1913.
    [CrossRef]

1930 (1)

I. Langmuir, S. MacLane, and K. Blodgett, Phys. Rev. 35, 478; 1930.
[CrossRef]

1928 (1)

ZS. f. Tech. Phys. 9, 186; 1928.

1925 (2)

W. E. Forsythe, Astrophys. J. 61, 146; 1925.
[CrossRef]

ZS. f Tech. Phys. 6, 317; 1925.

1916 (2)

Phys. Rev. 8, 470; 1916.
[CrossRef]

I. Langmuir, Phys. Rev. 8, 149; 1916.
[CrossRef]

1913 (1)

I. Langmuir, Phys. Rev. 2, 329; 1913.
[CrossRef]

Blodgett, K.

I. Langmuir, S. MacLane, and K. Blodgett, Phys. Rev. 35, 478; 1930.
[CrossRef]

Forsythe, W. E.

W. E. Forsythe, Astrophys. J. 61, 146; 1925.
[CrossRef]

W. E. Forsythe, loc. cit.

Langmuir, I.

I. Langmuir, S. MacLane, and K. Blodgett, Phys. Rev. 35, 478; 1930.
[CrossRef]

I. Langmuir, Phys. Rev. 8, 149; 1916.
[CrossRef]

I. Langmuir, Phys. Rev. 2, 329; 1913.
[CrossRef]

MacLane, S.

I. Langmuir, S. MacLane, and K. Blodgett, Phys. Rev. 35, 478; 1930.
[CrossRef]

Astrophys. J. (1)

W. E. Forsythe, Astrophys. J. 61, 146; 1925.
[CrossRef]

Phys. Rev. (4)

I. Langmuir, Phys. Rev. 2, 329; 1913.
[CrossRef]

Phys. Rev. 8, 470; 1916.
[CrossRef]

I. Langmuir, S. MacLane, and K. Blodgett, Phys. Rev. 35, 478; 1930.
[CrossRef]

I. Langmuir, Phys. Rev. 8, 149; 1916.
[CrossRef]

ZS. f Tech. Phys. (1)

ZS. f Tech. Phys. 6, 317; 1925.

ZS. f. Tech. Phys. (1)

ZS. f. Tech. Phys. 9, 186; 1928.

Other (1)

W. E. Forsythe, loc. cit.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Variations in rate evaporation of coiled filaments with pitch at constant temperature and 200 percent mandrel. Curve denotes calculated values.

Fig. 2
Fig. 2

Variation in rate evaporation of coiled filaments with mandrel at constant temperature and 150 percent pitch. Curve denotes calculated values.

Tables (1)

Tables Icon

Table 1 Characteristics of tungsten coiled filaments as compared with straight filaments at constant temperature

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m = e π w 0 1 - R 0 R t