Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Helmholtz, Physiological Optics, Engl. Transl. II, 126, 128; 1924.
  2. Priest, J. Opt. Soc. Amer.,  4, 402–4; 1920; J. Opt. Soc. Amer. 5, 513–4; 1921.
    [Crossref]
  3. Grünberg, Sitzb. Akad. Wien, II A,  113, 627–36; 1904.
  4. Parsons, Introduction to the Study of Color Vision, p.35; 1915.
  5. Sinden, J. Opt. Soc. Amer. 7, 1123–53; 1923.
    [Crossref]

1923 (1)

Sinden, J. Opt. Soc. Amer. 7, 1123–53; 1923.
[Crossref]

1920 (1)

Priest, J. Opt. Soc. Amer.,  4, 402–4; 1920; J. Opt. Soc. Amer. 5, 513–4; 1921.
[Crossref]

1904 (1)

Grünberg, Sitzb. Akad. Wien, II A,  113, 627–36; 1904.

Grünberg,

Grünberg, Sitzb. Akad. Wien, II A,  113, 627–36; 1904.

Helmholtz,

Helmholtz, Physiological Optics, Engl. Transl. II, 126, 128; 1924.

Parsons,

Parsons, Introduction to the Study of Color Vision, p.35; 1915.

Priest,

Priest, J. Opt. Soc. Amer.,  4, 402–4; 1920; J. Opt. Soc. Amer. 5, 513–4; 1921.
[Crossref]

Sinden,

Sinden, J. Opt. Soc. Amer. 7, 1123–53; 1923.
[Crossref]

J. Opt. Soc. Amer. (2)

Priest, J. Opt. Soc. Amer.,  4, 402–4; 1920; J. Opt. Soc. Amer. 5, 513–4; 1921.
[Crossref]

Sinden, J. Opt. Soc. Amer. 7, 1123–53; 1923.
[Crossref]

Sitzb. Akad. Wien, II A (1)

Grünberg, Sitzb. Akad. Wien, II A,  113, 627–36; 1904.

Other (2)

Parsons, Introduction to the Study of Color Vision, p.35; 1915.

Helmholtz, Physiological Optics, Engl. Transl. II, 126, 128; 1924.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Tables (2)

Tables Icon

Table 1 Constants of Equation 8. Earlier Work (Helmholtz).

Tables Icon

Table 2 Constants of equation 8. Sinden’s observers.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Priest ( 530 - f ) ( f - 608 ) = 220 Gr u ¨ nberg ( λ - 559 ) ( 498 - λ ) = 424
λ - λ 0 λ - λ 0 = S ( λ - λ 0 ) + I
a = - ( S λ 0 - I S ) = I S - λ 0
b = - ( S λ 0 + 1 S ) = - ( 1 S + λ 0 )
k = - ( λ 0 + S λ 0 λ 0 - I λ 0 S )
λ λ + b λ + a λ = k
c = k + a b
λ λ + b λ + a λ + a b = c
( λ + a ) ( λ + b ) = c
I = s S + i
w = x y = S x + I
x = λ - λ 0             or             λ = x + λ 0
y = λ - λ 0             or             λ = y + λ 0
s = - x c
i = w c .
c = - I S 2 .
( 532.6 - f ) ( f - 609.0 ) = 271.0.