Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Frehafer and C. L. Snow, Miscellaneous Publication of the Bureau of Standards; No. 56, March21, 1925.
  2. W. E. Forsythe and A. G. Worthing, The Properties of Tungsten and the Characteristics of Tungsten Lamps, The Astrophysical Journal,  61, April, 1925.
    [CrossRef]
  3. H. E. Ives, The Luminous Properties of the Black Body, J.O.S.A. & R.S.I.,  12, February, 1926.
    [CrossRef]
  4. A. G. Worthing, Emissive Powers and Temperatures of Non-black Bodies, Bulletin Am. Inst. Mining and Metal. Eng., No. 153, Sept.1919.
  5. W. E. Forsythe, Color Match and Spectral Distribution, J.O.S.A. & R.S.I.,  7, Dec.1923.
    [CrossRef]

1926 (1)

H. E. Ives, The Luminous Properties of the Black Body, J.O.S.A. & R.S.I.,  12, February, 1926.
[CrossRef]

1925 (2)

M. K. Frehafer and C. L. Snow, Miscellaneous Publication of the Bureau of Standards; No. 56, March21, 1925.

W. E. Forsythe and A. G. Worthing, The Properties of Tungsten and the Characteristics of Tungsten Lamps, The Astrophysical Journal,  61, April, 1925.
[CrossRef]

1923 (1)

W. E. Forsythe, Color Match and Spectral Distribution, J.O.S.A. & R.S.I.,  7, Dec.1923.
[CrossRef]

1919 (1)

A. G. Worthing, Emissive Powers and Temperatures of Non-black Bodies, Bulletin Am. Inst. Mining and Metal. Eng., No. 153, Sept.1919.

Forsythe, W. E.

W. E. Forsythe and A. G. Worthing, The Properties of Tungsten and the Characteristics of Tungsten Lamps, The Astrophysical Journal,  61, April, 1925.
[CrossRef]

W. E. Forsythe, Color Match and Spectral Distribution, J.O.S.A. & R.S.I.,  7, Dec.1923.
[CrossRef]

Frehafer, M. K.

M. K. Frehafer and C. L. Snow, Miscellaneous Publication of the Bureau of Standards; No. 56, March21, 1925.

Ives, H. E.

H. E. Ives, The Luminous Properties of the Black Body, J.O.S.A. & R.S.I.,  12, February, 1926.
[CrossRef]

Snow, C. L.

M. K. Frehafer and C. L. Snow, Miscellaneous Publication of the Bureau of Standards; No. 56, March21, 1925.

Worthing, A. G.

W. E. Forsythe and A. G. Worthing, The Properties of Tungsten and the Characteristics of Tungsten Lamps, The Astrophysical Journal,  61, April, 1925.
[CrossRef]

A. G. Worthing, Emissive Powers and Temperatures of Non-black Bodies, Bulletin Am. Inst. Mining and Metal. Eng., No. 153, Sept.1919.

Bulletin Am. Inst. Mining and Metal. Eng. (1)

A. G. Worthing, Emissive Powers and Temperatures of Non-black Bodies, Bulletin Am. Inst. Mining and Metal. Eng., No. 153, Sept.1919.

J.O.S.A. & R.S.I. (2)

W. E. Forsythe, Color Match and Spectral Distribution, J.O.S.A. & R.S.I.,  7, Dec.1923.
[CrossRef]

H. E. Ives, The Luminous Properties of the Black Body, J.O.S.A. & R.S.I.,  12, February, 1926.
[CrossRef]

Miscellaneous Publication of the Bureau of Standards (1)

M. K. Frehafer and C. L. Snow, Miscellaneous Publication of the Bureau of Standards; No. 56, March21, 1925.

The Astrophysical Journal (1)

W. E. Forsythe and A. G. Worthing, The Properties of Tungsten and the Characteristics of Tungsten Lamps, The Astrophysical Journal,  61, April, 1925.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

F. 1
F. 1

Showing the spectral distribution of energy from a black body radiator at a temperature T°K. Curve A shows the ratio Eλ/Em of spectral intensity of radiant energy at wave length λ to the maximum intensity, plotted as ordinate; and the product of wave length λ in microns times the temperature T in degrees Kelvin or λT, plotted as abscissa. Curve B shows the proportion of radiant energy ϕ emitted in the region between zero and λT micron degrees.

F. 2
F. 2

Proportion of radiant energy ϕ emitted by a black body radiator in the spectral region between zero and λT micron degrees, plotted to a logarithmic scale.

F. 3
F. 3

Per cent of radiant energy emitted in spectral region between wave lengths zero and λ Angstroms for a black body radiator at various temperatures.

F. 4
F. 4

Per cent of radiant energy emitted in four given spectral regions by a black body radiator at various temperatures between 1000° and 20000°K. Curve A shows per cent emitted in the far ultraviolet region between wave lengths λ0 and λ3000 A; Curve B, in the near ultraviolet region between λ3000 and λ4000; Curve C, in the visible region, between λ4000 and λ7600, and Curve D, in the infrared region, between λ7600 and infinity.

Tables (5)

Tables Icon

Table 1 Showing energy distribution of a black body radiator. In the third column is tabulated the proportion of energy emitted by a black body radiator at temperature T in the spectral region between wave lengths zero and λ microns.

Tables Icon

Table 2 Proportions of spectral energy emitted in the far ultraviolet, near ultraviolet, visible and infrared regions of the spectrum of a black body radiator at various temperatures.

Tables Icon

Table 3 Data on tungsten compiled from various published data by W. E. Forsythe and A. G. Worthing, together with comparative values of factor G for the visible spectrum as computed by use of either emissivity or luminous efficiency data. According to equations 19 and 23, G is the factor by which the proportion of energy in a given region of the spectrum of a black body at temperature Tc must be multiplied in order to obtain the proportion of energy emitted in the same spectral region by tungsten when of color temperature Tc.

Tables Icon

Table 4 Data on sundry non-black body radiators, according to E. P. Hyde, together with computed values of factor G for the visible spectrum.

Tables Icon

Table 5 Data on various types of incandescent lamps and computed values of factor G for the visible spectrum and the proportion of total energy emitted by tungsten in the visible spectrum (λ4000 to λ7000).

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E λ = C 1 λ 5 1 e C 2 / λ T 1
E = 0 E λ d λ = 0 C 1 λ 5 d λ e C 2 / λ T 1
= 6 C 1 α C 4 2 T 4 = σ T 4
E 1 = 0 λ E λ d λ
ϕ = E 1 E = 1 E 0 λ E λ d λ
= C 2 4 6 α 0 λ T d ( λ T ) ( λ T ) 5 ( e C 2 / λ T 1 )
λ m T = A , a constant
E m = C 1 ( A T ) 5 e C 2 / A 1
E λ E m = ( A λ T ) 5 e C 2 / A 1 e C 2 / λ T 1
0 E λ E m d ( λ T ) = 6 α A 5 C 2 4 ( e C 2 / A 1 )
ϕ = 0 λ T E λ E m d ( λ T ) 0 E λ E m d ( λ T ) = C 2 4 6 α 0 λ T d ( λ T ) ( λ T ) 5 ( e C 2 / λ T 1 )
0 E λ E m d ( λ T ) = 4395.4 micron degress
ϕ λ 2 T ϕ λ 1 T = 1 4395 λ 1 T λ 2 T E λ E m Δ ( λ T )
E = λ 1 λ 2 c C 1 λ 5 d λ ( C 2 e λ T c 1 )
= T c 4 λ 1 T c λ 2 T c c C 1 ( λ T c ) 5 d ( λ T c ) ( e C 2 / λ T c 1 )
E = c T c 4 λ 1 T c λ 2 T c C 1 ( λ T c ) 5 d ( λ T c ) e C 2 / λ T c 1
E t = t σ T 4 = t 6 C 1 α C 2 4 T 4 .
ϕ = E E t = c t ( T c T ) 4 C 2 4 6 α λ 1 T c λ 2 T c d ( λ T c ) ( λ T c ) 5 ( e C 2 / λ T c 1 )
ϕ = c t ( T c T ) 4 ( ϕ λ 2 T c ϕ λ 1 T c ) = G ( ϕ λ 2 T c ϕ λ 1 T c )
c t ( T c T ) 4
l = π b σ T c 4
l 1 = π b 1 σ t T 4
c = b 1 b
ϕ = l 1 l ( ϕ λ 2 T c ϕ λ 1 T c )
G = c t ( T c T ) 4 = l 1 l
c t ( T c T ) 4
l 1 l