Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Academie des Sciences, December21, 1925, Comptes RendusJanuary4, 1926. See Fig. 5, upper figure.
  2. Revue d’Optique,  5, p. 105; 1926.
  3. Comptes Rendus, May10, 1926.
  4. Jour. de Physique, January, 1927.
  5. American Physical Society, February, 1927.
  6. Comptes Rendus, July4, 1927.
  7. International Education Board Fellow.
  8. J. Thibaud and A. Soltan, Comptes Rendus, October3, 1927.See also Jour. de Physique, November and December, 1927.
  9. J. Thibaud, Comptes Rendus, January, 1928.Nature 3, March, 1928.
  10. Paris, 31 rue Lhomond.
  11. Thoraeus and Siegbahn: Archiv. f. Mat. Astr. och Fysik,  18, p. 1; 1925.
  12. De la lumiere aux rayons X (Presses Universitaires (1927)).
  13. It is to be noted that the numerical accord, from Bohr and Coster’s data, would be very good, taking NVI–VIIas the starting level.See Journal de Physique, December, 1927.
  14. J. Thibaud, Comptes Rendus, January30, 1928.Nature, March3, 1928.
  15. Journal de Physique,  8, p. 1; 1927.
  16. Ann. der Physik,  82, p. 585; 1927.

1928 (2)

J. Thibaud, Comptes Rendus, January, 1928.Nature 3, March, 1928.

J. Thibaud, Comptes Rendus, January30, 1928.Nature, March3, 1928.

1927 (5)

Journal de Physique,  8, p. 1; 1927.

Ann. der Physik,  82, p. 585; 1927.

Jour. de Physique, January, 1927.

J. Thibaud and A. Soltan, Comptes Rendus, October3, 1927.See also Jour. de Physique, November and December, 1927.

It is to be noted that the numerical accord, from Bohr and Coster’s data, would be very good, taking NVI–VIIas the starting level.See Journal de Physique, December, 1927.

1926 (1)

Comptes Rendus, May10, 1926.

1925 (2)

Academie des Sciences, December21, 1925, Comptes RendusJanuary4, 1926. See Fig. 5, upper figure.

Thoraeus and Siegbahn: Archiv. f. Mat. Astr. och Fysik,  18, p. 1; 1925.

Soltan, A.

J. Thibaud and A. Soltan, Comptes Rendus, October3, 1927.See also Jour. de Physique, November and December, 1927.

Thibaud, J.

J. Thibaud, Comptes Rendus, January, 1928.Nature 3, March, 1928.

J. Thibaud, Comptes Rendus, January30, 1928.Nature, March3, 1928.

J. Thibaud and A. Soltan, Comptes Rendus, October3, 1927.See also Jour. de Physique, November and December, 1927.

Ann. der Physik (1)

Ann. der Physik,  82, p. 585; 1927.

Comptes Rendus (6)

J. Thibaud, Comptes Rendus, January30, 1928.Nature, March3, 1928.

Academie des Sciences, December21, 1925, Comptes RendusJanuary4, 1926. See Fig. 5, upper figure.

Comptes Rendus, May10, 1926.

Comptes Rendus, July4, 1927.

J. Thibaud and A. Soltan, Comptes Rendus, October3, 1927.See also Jour. de Physique, November and December, 1927.

J. Thibaud, Comptes Rendus, January, 1928.Nature 3, March, 1928.

Jour. de Physique (1)

Jour. de Physique, January, 1927.

Journal de Physique (2)

Journal de Physique,  8, p. 1; 1927.

It is to be noted that the numerical accord, from Bohr and Coster’s data, would be very good, taking NVI–VIIas the starting level.See Journal de Physique, December, 1927.

Revue d’Optique (1)

Revue d’Optique,  5, p. 105; 1926.

Thoraeus and Siegbahn: Archiv. f. Mat. Astr. och Fysik (1)

Thoraeus and Siegbahn: Archiv. f. Mat. Astr. och Fysik,  18, p. 1; 1925.

Other (4)

De la lumiere aux rayons X (Presses Universitaires (1927)).

American Physical Society, February, 1927.

Paris, 31 rue Lhomond.

International Education Board Fellow.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

F. 1
F. 1

Vacuum spectrograph.

F. 2
F. 2

Apparatus with condensed spark chamber.

F. 3
F. 3

Spectrograph with x-ray tube.

F. 4
F. 4

Soft x-ray emission spectra (from Thibaud and Soltan) (full size)

F. 5
F. 5

Grating spectra

Tables (2)

Tables Icon

Table 1 Observed x-ray lines

Tables Icon

Table 2 Width of several lines.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

μ = 1 δ δ = e 2 2 π m N i υ 2 ν i 2
δ = 1.2 × 10 2
δ = 1.0 × 10 2
Δ θ = 4 δ / sin 2 θ .