Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Owen, Proc. of the Physical Society of London,  27, p. 39; 1914.
    [CrossRef]
  2. J. G. Ferguson, Bell System Technical Journal, p. 1; July, 1927.
  3. W. J. Shackelton, A.I.E.E. Journal, Feb.1927.
  4. G. A. Campbell, Electrical World and Engineer, April2, 1904.
  5. G. A. Campbell, Bell System Technical Journal, p. 18; July, 1922.
    [CrossRef]
  6. J. W. Horton, N. H. Ricker, and W. H. Marrison, A.I.E.E. Trans., June, 1923.For a general discussion of types of inductance bridges see Hague, Alternating Current Bridge Measurements, Pitman, 1923.

1927 (2)

J. G. Ferguson, Bell System Technical Journal, p. 1; July, 1927.

W. J. Shackelton, A.I.E.E. Journal, Feb.1927.

1923 (1)

J. W. Horton, N. H. Ricker, and W. H. Marrison, A.I.E.E. Trans., June, 1923.For a general discussion of types of inductance bridges see Hague, Alternating Current Bridge Measurements, Pitman, 1923.

1922 (1)

G. A. Campbell, Bell System Technical Journal, p. 18; July, 1922.
[CrossRef]

1914 (1)

Owen, Proc. of the Physical Society of London,  27, p. 39; 1914.
[CrossRef]

1904 (1)

G. A. Campbell, Electrical World and Engineer, April2, 1904.

Campbell, G. A.

G. A. Campbell, Bell System Technical Journal, p. 18; July, 1922.
[CrossRef]

G. A. Campbell, Electrical World and Engineer, April2, 1904.

Ferguson, J. G.

J. G. Ferguson, Bell System Technical Journal, p. 1; July, 1927.

Horton, J. W.

J. W. Horton, N. H. Ricker, and W. H. Marrison, A.I.E.E. Trans., June, 1923.For a general discussion of types of inductance bridges see Hague, Alternating Current Bridge Measurements, Pitman, 1923.

Marrison, W. H.

J. W. Horton, N. H. Ricker, and W. H. Marrison, A.I.E.E. Trans., June, 1923.For a general discussion of types of inductance bridges see Hague, Alternating Current Bridge Measurements, Pitman, 1923.

Owen,

Owen, Proc. of the Physical Society of London,  27, p. 39; 1914.
[CrossRef]

Ricker, N. H.

J. W. Horton, N. H. Ricker, and W. H. Marrison, A.I.E.E. Trans., June, 1923.For a general discussion of types of inductance bridges see Hague, Alternating Current Bridge Measurements, Pitman, 1923.

Shackelton, W. J.

W. J. Shackelton, A.I.E.E. Journal, Feb.1927.

A.I.E.E. Journal (1)

W. J. Shackelton, A.I.E.E. Journal, Feb.1927.

A.I.E.E. Trans. (1)

J. W. Horton, N. H. Ricker, and W. H. Marrison, A.I.E.E. Trans., June, 1923.For a general discussion of types of inductance bridges see Hague, Alternating Current Bridge Measurements, Pitman, 1923.

Bell System Technical Journal (2)

G. A. Campbell, Bell System Technical Journal, p. 18; July, 1922.
[CrossRef]

J. G. Ferguson, Bell System Technical Journal, p. 1; July, 1927.

Electrical World and Engineer (1)

G. A. Campbell, Electrical World and Engineer, April2, 1904.

Proc. of the Physical Society of London (1)

Owen, Proc. of the Physical Society of London,  27, p. 39; 1914.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

F. 1
F. 1

Methods of representing the impedance of an inductance coil.

F. 2
F. 2

Schematic of ideal bridge.

F. 3
F. 3

Schematic of actual bridge.

F. 4
F. 4

Shielding diagram of completed bridge.

Tables (3)

Tables Icon

Table 1 Relative Magnitudes of Terms in Equation 7 at 1000 cycles. (Inductance in henrys, capacities in farads, conductances in mhos).

Tables Icon

Table 2 Speech frequency measurements of inductance.

Tables Icon

Table 3 Carrier frequency measurements of inductance.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

L = L 1 + r 2 / ω 2 L 1 R = r + ω 2 L 1 2 / r
G = 1 / R = r / ( r 2 + ω 2 L 1 2 )
Y 1 / Y 3 = Y 2 / Y 4
G 1 j ω C 3 = G 2 + 1 / j ω L G 4 + j ω C 4
L = C 3 / G 1 G 4
G 2 = G 1 C 4 / C 3
G 1 + j ω C 1 g 3 + j ω C 3 = g 2 + j ω C 2 + 1 / j ω L G 4 + g 4 + j ω C 4
L = C 3 / ( G 1 G 4 + G 1 g 4 g 2 g 3 + ω 2 C 2 C 3 ω 2 C 1 C 4 )
g 2 = G 1 C 4 / C 3 + ( G 4 + g 4 ) C 1 / C 3 g 3 C 2 / C 3 + g 3 / ω 2 L C 3
G 1 + j ω C 1 g 3 + j ω C 3 = g 2 + j ω C 2 g 4 + j ω C 4
G 1 g 4 g 2 g 3 + ω 2 C 2 C 3 ω 2 C 1 C 4 = 0
g 2 = G 1 C 4 / C 3 + g 4 C 1 / C 3 g 3 C 2 / C 3
L = C 3 / [ G 1 G 4 + ( g 2 g 2 ) g 3 + ( C 2 C 2 ) ω 2 C 3 ( C 4 C 4 ) ω 2 C 1 ]
L = R 1 R 4 C 3
g 2 g 2 = G 4 C 1 / C 3 + g 3 / ω 2 L C 3 + ( C 2 C 2 ) g 3 / C 3 + G 1 ( C 4 C 4 ) / C 3
g 2 = G 2 + G 2
G 2 = g 2 G 2 + G 4 C 1 / C 3 + g 3 / ω 2 L C 3 + ( C 2 C 2 ) g 3 / C 3 + G 1 ( C 4 C 4 ) / C 3