Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Nichols and Snow; Phil. Mag.,  5, 33, p. 21; 1892.
  2. Rogers; Am. Jour. Sci.,  43, p. 301; 1892.
    [Crossref]
  3. Nichols and Crehore; Physical Review,  2, p. 161; 1894.
  4. Nichols and Howes; Physical Review,  2, 19, p. 315; 1922.
  5. Nichols and Wilber; Physical Review,  2, 17, p. 453; 1921.
    [Crossref]
  6. Howes; Physical Review,  2, 17, p. 469; 1921.
    [Crossref]
  7. Nichols, Howes, and Wilber; Physical Review,  2, 12, p. 364; 1918.
  8. Nichols; Am. Philos. Soc,  56, p. 258; 1917.
  9. Tanaka; J. O. S. A. & R. S. I.,  8, p. 314; 1924.
  10. Nichols; Physical Review, (2),  22, p. 420; 1923.
    [Crossref]
  11. Nichols; Physical Review, (2),  25, p. 376; 1925.
    [Crossref]
  12. Nichols; Proc. Nat. Acad. Sc.,  11, p. 47; 1925.
    [Crossref]
  13. Nichols; J. O. S. A. & R. S. I.,  13, p. 573, 1926.
    [Crossref]
  14. Henri Becquerel; C. R.,  146, p. 154, 1908.
  15. Nichols and Howes; Physical Review, (2),  19, p. 307; 1922.
  16. Frances G. Wick; Physical Review, (2),  24, p. 272; 1924
    [Crossref]
  17. Another striking instance of the effect of an activator was observed in the luminescence of columbium oxide. This sample was known to be impure. It did not agree as to melting point with the columbium oxide described in the writer’s recent paper on this oxide. (Physical Review,  25, p. 376.The blue glow of this material was so intense as to be measurable at 560°C at which temperature the value of I:/IBB for .45μ was 85200. (see Nichols and Howes; Physical Review, (2),  19, p. 311.)At 655° the ratio was 2150 or nearly 40% greater than for the ruby depicted in Figs. 6 to 9. The nature of the activator is unfortunately unknown.
  18. Nichols and Howes, l. c., Phys. Rev.,  19, p. 310.

1926 (1)

Nichols; J. O. S. A. & R. S. I.,  13, p. 573, 1926.
[Crossref]

1925 (2)

Nichols; Physical Review, (2),  25, p. 376; 1925.
[Crossref]

Nichols; Proc. Nat. Acad. Sc.,  11, p. 47; 1925.
[Crossref]

1924 (2)

Frances G. Wick; Physical Review, (2),  24, p. 272; 1924
[Crossref]

Tanaka; J. O. S. A. & R. S. I.,  8, p. 314; 1924.

1923 (1)

Nichols; Physical Review, (2),  22, p. 420; 1923.
[Crossref]

1922 (2)

Nichols and Howes; Physical Review,  2, 19, p. 315; 1922.

Nichols and Howes; Physical Review, (2),  19, p. 307; 1922.

1921 (2)

Nichols and Wilber; Physical Review,  2, 17, p. 453; 1921.
[Crossref]

Howes; Physical Review,  2, 17, p. 469; 1921.
[Crossref]

1918 (1)

Nichols, Howes, and Wilber; Physical Review,  2, 12, p. 364; 1918.

1917 (1)

Nichols; Am. Philos. Soc,  56, p. 258; 1917.

1908 (1)

Henri Becquerel; C. R.,  146, p. 154, 1908.

1894 (1)

Nichols and Crehore; Physical Review,  2, p. 161; 1894.

1892 (2)

Nichols and Snow; Phil. Mag.,  5, 33, p. 21; 1892.

Rogers; Am. Jour. Sci.,  43, p. 301; 1892.
[Crossref]

Becquerel, Henri

Henri Becquerel; C. R.,  146, p. 154, 1908.

Crehore,

Nichols and Crehore; Physical Review,  2, p. 161; 1894.

Howes,

Nichols and Howes; Physical Review,  2, 19, p. 315; 1922.

Nichols and Howes; Physical Review, (2),  19, p. 307; 1922.

Howes; Physical Review,  2, 17, p. 469; 1921.
[Crossref]

Nichols, Howes, and Wilber; Physical Review,  2, 12, p. 364; 1918.

Nichols and Howes, l. c., Phys. Rev.,  19, p. 310.

Nichols,

Nichols; J. O. S. A. & R. S. I.,  13, p. 573, 1926.
[Crossref]

Nichols; Physical Review, (2),  25, p. 376; 1925.
[Crossref]

Nichols; Proc. Nat. Acad. Sc.,  11, p. 47; 1925.
[Crossref]

Nichols; Physical Review, (2),  22, p. 420; 1923.
[Crossref]

Nichols and Howes; Physical Review, (2),  19, p. 307; 1922.

Nichols and Howes; Physical Review,  2, 19, p. 315; 1922.

Nichols and Wilber; Physical Review,  2, 17, p. 453; 1921.
[Crossref]

Nichols, Howes, and Wilber; Physical Review,  2, 12, p. 364; 1918.

Nichols; Am. Philos. Soc,  56, p. 258; 1917.

Nichols and Crehore; Physical Review,  2, p. 161; 1894.

Nichols and Snow; Phil. Mag.,  5, 33, p. 21; 1892.

Nichols and Howes, l. c., Phys. Rev.,  19, p. 310.

Rogers,

Rogers; Am. Jour. Sci.,  43, p. 301; 1892.
[Crossref]

Snow,

Nichols and Snow; Phil. Mag.,  5, 33, p. 21; 1892.

Tanaka,

Tanaka; J. O. S. A. & R. S. I.,  8, p. 314; 1924.

Wick, Frances G.

Frances G. Wick; Physical Review, (2),  24, p. 272; 1924
[Crossref]

Wilber,

Nichols and Wilber; Physical Review,  2, 17, p. 453; 1921.
[Crossref]

Nichols, Howes, and Wilber; Physical Review,  2, 12, p. 364; 1918.

Am. Jour. Sci. (1)

Rogers; Am. Jour. Sci.,  43, p. 301; 1892.
[Crossref]

Am. Philos. Soc (1)

Nichols; Am. Philos. Soc,  56, p. 258; 1917.

C. R. (1)

Henri Becquerel; C. R.,  146, p. 154, 1908.

J. O. S. A. & R. S. I. (2)

Nichols; J. O. S. A. & R. S. I.,  13, p. 573, 1926.
[Crossref]

Tanaka; J. O. S. A. & R. S. I.,  8, p. 314; 1924.

l. c., Phys. Rev. (1)

Nichols and Howes, l. c., Phys. Rev.,  19, p. 310.

Phil. Mag. (1)

Nichols and Snow; Phil. Mag.,  5, 33, p. 21; 1892.

Physical Review (10)

Nichols and Howes; Physical Review, (2),  19, p. 307; 1922.

Frances G. Wick; Physical Review, (2),  24, p. 272; 1924
[Crossref]

Another striking instance of the effect of an activator was observed in the luminescence of columbium oxide. This sample was known to be impure. It did not agree as to melting point with the columbium oxide described in the writer’s recent paper on this oxide. (Physical Review,  25, p. 376.The blue glow of this material was so intense as to be measurable at 560°C at which temperature the value of I:/IBB for .45μ was 85200. (see Nichols and Howes; Physical Review, (2),  19, p. 311.)At 655° the ratio was 2150 or nearly 40% greater than for the ruby depicted in Figs. 6 to 9. The nature of the activator is unfortunately unknown.

Nichols; Physical Review, (2),  22, p. 420; 1923.
[Crossref]

Nichols; Physical Review, (2),  25, p. 376; 1925.
[Crossref]

Nichols and Crehore; Physical Review,  2, p. 161; 1894.

Nichols and Howes; Physical Review,  2, 19, p. 315; 1922.

Nichols and Wilber; Physical Review,  2, 17, p. 453; 1921.
[Crossref]

Howes; Physical Review,  2, 17, p. 469; 1921.
[Crossref]

Nichols, Howes, and Wilber; Physical Review,  2, 12, p. 364; 1918.

Proc. Nat. Acad. Sc. (1)

Nichols; Proc. Nat. Acad. Sc.,  11, p. 47; 1925.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

F. 1
F. 1

Development of selective radiation (luminescence) from data of 1891.

F. 2
F. 2

Fatigue in the brightness of ZnO at 1000°C during incandescence (Taken for .45υ)

F. 3
F. 3

Submerged components in the spectrum of CaO when excited by the H flame.

F. 4
F. 4

Submerged components in the spectrum of CaCO3 when excited at 200°C and at 20°C by the iron spark. Compare with Fig. 3.

F. 5
F. 5

Submerged components in the spectrum of a phosphorescent sulphide when excited by a zinc spark (Z) or by the hydrogen flame(H).

F. 6
F. 6

Luminescence of the incandescent ruby.

F. 7
F. 7

Luminescence of Al2O3 and the ruby as seen through the green screen (.52μ).

F. 8
F. 8

Enhancement of the luminescence of the ruby at .65μ; due to activation by chromium.

F. 9
F. 9

The blue-violet luminescence of Al2O3 and the ruby.

F. 10
F. 10

Luminescence tests of fluorite containing samarium.

F. 11
F. 11

Luminescence of fluorite (.45μ), with curve for CaO and the red and green crests of fluorite (R and G)

F. 12
F. 12

Fluorite (above) and samarium (below) showing enhancement.

Tables (3)

Tables Icon

Table 1 Luminescence of lime

Tables Icon

Table 2 Luminescence of calcium bismuth sulphide, No. 3

Tables Icon

Table 3 Luminescence of strontium bismuth sulphide, No. 13