Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Rayleigh, Phil. Mag.,  34, p. 481; 1892.
    [Crossref]
  2. Cabannes, Comptes Rendus,  140, p. 62; 1915.
  3. Gans, Ann der Phys. 65, p. 97; 1921.
    [Crossref]
  4. Raman, Molecular Diffraction of Light, Calcutta Univ. Press.
  5. Raman and Ramanathan, Proc. R. S.,  104, p. 357; 1923.
    [Crossref]
  6. Ramanathan, Proc. R. S.,  102, p. 151; 1922.
    [Crossref]
  7. Cabannes, Ann der Phys.,  15, p. 5; 1921.
  8. Anadant, Ann de Phys.,  1, p. 346; 1924.
  9. Onnes and Keesom, Versl. Ak. v. Wet., Amsterdam, 10, p.611; 1908.
  10. Ganesan, Phys Rev.,  23, p. 63; 1924.
    [Crossref]
  11. King, Proc R. S.,  104, p. 333; 1923.
    [Crossref]
  12. Smithsonian Physical Tables.
  13. Landolt-Börnstein Tables.
  14. Ganesan. Phil, Mag.June25, 1925.

1925 (1)

Ganesan. Phil, Mag.June25, 1925.

1924 (2)

Anadant, Ann de Phys.,  1, p. 346; 1924.

Ganesan, Phys Rev.,  23, p. 63; 1924.
[Crossref]

1923 (2)

King, Proc R. S.,  104, p. 333; 1923.
[Crossref]

Raman and Ramanathan, Proc. R. S.,  104, p. 357; 1923.
[Crossref]

1922 (1)

Ramanathan, Proc. R. S.,  102, p. 151; 1922.
[Crossref]

1921 (2)

Cabannes, Ann der Phys.,  15, p. 5; 1921.

Gans, Ann der Phys. 65, p. 97; 1921.
[Crossref]

1915 (1)

Cabannes, Comptes Rendus,  140, p. 62; 1915.

1892 (1)

Rayleigh, Phil. Mag.,  34, p. 481; 1892.
[Crossref]

Anadant,

Anadant, Ann de Phys.,  1, p. 346; 1924.

Cabannes,

Cabannes, Ann der Phys.,  15, p. 5; 1921.

Cabannes, Comptes Rendus,  140, p. 62; 1915.

Ganesan,

Ganesan. Phil, Mag.June25, 1925.

Ganesan, Phys Rev.,  23, p. 63; 1924.
[Crossref]

Gans,

Gans, Ann der Phys. 65, p. 97; 1921.
[Crossref]

Keesom,

Onnes and Keesom, Versl. Ak. v. Wet., Amsterdam, 10, p.611; 1908.

King,

King, Proc R. S.,  104, p. 333; 1923.
[Crossref]

Onnes,

Onnes and Keesom, Versl. Ak. v. Wet., Amsterdam, 10, p.611; 1908.

Raman,

Raman and Ramanathan, Proc. R. S.,  104, p. 357; 1923.
[Crossref]

Raman, Molecular Diffraction of Light, Calcutta Univ. Press.

Ramanathan,

Raman and Ramanathan, Proc. R. S.,  104, p. 357; 1923.
[Crossref]

Ramanathan, Proc. R. S.,  102, p. 151; 1922.
[Crossref]

Rayleigh,

Rayleigh, Phil. Mag.,  34, p. 481; 1892.
[Crossref]

Ann de Phys. (1)

Anadant, Ann de Phys.,  1, p. 346; 1924.

Ann der Phys. (2)

Gans, Ann der Phys. 65, p. 97; 1921.
[Crossref]

Cabannes, Ann der Phys.,  15, p. 5; 1921.

Comptes Rendus (1)

Cabannes, Comptes Rendus,  140, p. 62; 1915.

Phil, Mag. (1)

Ganesan. Phil, Mag.June25, 1925.

Phil. Mag. (1)

Rayleigh, Phil. Mag.,  34, p. 481; 1892.
[Crossref]

Phys Rev. (1)

Ganesan, Phys Rev.,  23, p. 63; 1924.
[Crossref]

Proc R. S. (1)

King, Proc R. S.,  104, p. 333; 1923.
[Crossref]

Proc. R. S. (2)

Raman and Ramanathan, Proc. R. S.,  104, p. 357; 1923.
[Crossref]

Ramanathan, Proc. R. S.,  102, p. 151; 1922.
[Crossref]

Other (4)

Onnes and Keesom, Versl. Ak. v. Wet., Amsterdam, 10, p.611; 1908.

Raman, Molecular Diffraction of Light, Calcutta Univ. Press.

Smithsonian Physical Tables.

Landolt-Börnstein Tables.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

F. 1
F. 1

The variation of the scattering coefficient with wave length.

F. 2A
F. 2A

Spectra from which effective wave length was determined.

F. 2B
F. 2B

Comparison of intensities of incident and scattered light for methyl alcohol.

F. 3
F. 3

Calibration curve for determining intensity in terms of blackening.

F. 4
F. 4

Diagram of scattering apparatus.

Tables (3)

Tables Icon

Table 1 Data for Calculation of λe

Tables Icon

Table 2 Sample Calculation of a

Tables Icon

Table 3 Calculated and Observed Values of Scattering Coefficient

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

i = I π 2 R T β ( μ 2 1 ) 2 ( μ 2 + 2 ) 2 18 r 2 N λ 4 6 ( 1 + ρ ) 6 7 ρ = I π 2 18 r 2 K
1 + 1 ρ 1 + ρ cos 2 θ
a = π 3 9 K { 2 + 2 3 ( 1 ρ 1 + ρ ) } = 8 π 3 R T β ( μ 2 1 ) 2 ( μ 2 + 2 ) 2 N λ 4 2 + ρ 6 7 ρ
μ 2 1 μ 2 + 2 = k d
a = K i n d λ λ n 4 = K i Δ λ λ e 4 = K ( i 1 Δ λ 1 λ 1 4 + i 2 Δ λ 2 λ 2 4 + i 3 d λ 3 λ 3 4 + )
i Δ λ = i 1 Δ λ 1 + i 2 Δ λ 2 + i 3 Δ λ 3 +
λ e 4 = i n i n λ n 4
D = log 10 transmitted intensity incident intensity
R = a 1 a 2 A 1 A 2
a = 8 i r 2 π 3 I ( 2 + ρ 1 + ρ )
a = 8 I s R r 2 π 3 I i A d ( 2 + ρ 1 + ρ )
i n λ n 4 × 10
a = 3.427 × 734 × .91 × 0433 × .1715 × .507 × 2 32.43 × .665 × 2013 × 132.8 = .299 × 10 5