Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Miller, “The Science of Musical Sounds,” 16.
  2. , September, 1921.
  3. Lapp, J.O.S.A. & R.S.I.,  7, p. 661; 1923
    [CrossRef]
  4. Wente, Phys. Rev. (2)  19, p. 498; 1922.
    [CrossRef]
  5. Hewlett, Phys. Rev. (2)  19, p. 52; 1922.
    [CrossRef]
  6. Miller, Ibid, p. 145.
  7. Fletcher, Bell Technical Journal,  2, No. 4, p. 145; 1023.
    [CrossRef]
  8. Knudson, Phys. Rev. 21, p. 84; 1923.
    [CrossRef]
  9. Kranz, Phys. Rev. 22, p. 66; 1923.
    [CrossRef]
  10. Wente, Phys. Rev. 19, p. 333; 1922.
    [CrossRef]
  11. See author’s note at the end of this paper.
  12. Kennelly, Electrical Vibration Instruments, Macmillan, p. 405, 1923.
  13. Krigar-Menzel and Raps, Wied. Ann.,  44, p. 623, 1891.
    [CrossRef]
  14. Lamb, “Dynamical Theory of Sound,” p. 227.

1923 (3)

Lapp, J.O.S.A. & R.S.I.,  7, p. 661; 1923
[CrossRef]

Knudson, Phys. Rev. 21, p. 84; 1923.
[CrossRef]

Kranz, Phys. Rev. 22, p. 66; 1923.
[CrossRef]

1922 (3)

Wente, Phys. Rev. 19, p. 333; 1922.
[CrossRef]

Wente, Phys. Rev. (2)  19, p. 498; 1922.
[CrossRef]

Hewlett, Phys. Rev. (2)  19, p. 52; 1922.
[CrossRef]

1891 (1)

Krigar-Menzel and Raps, Wied. Ann.,  44, p. 623, 1891.
[CrossRef]

1023 (1)

Fletcher, Bell Technical Journal,  2, No. 4, p. 145; 1023.
[CrossRef]

Fletcher,

Fletcher, Bell Technical Journal,  2, No. 4, p. 145; 1023.
[CrossRef]

Hewlett,

Hewlett, Phys. Rev. (2)  19, p. 52; 1922.
[CrossRef]

Kennelly,

Kennelly, Electrical Vibration Instruments, Macmillan, p. 405, 1923.

Knudson,

Knudson, Phys. Rev. 21, p. 84; 1923.
[CrossRef]

Kranz,

Kranz, Phys. Rev. 22, p. 66; 1923.
[CrossRef]

Krigar-Menzel,

Krigar-Menzel and Raps, Wied. Ann.,  44, p. 623, 1891.
[CrossRef]

Lamb,

Lamb, “Dynamical Theory of Sound,” p. 227.

Lapp,

Lapp, J.O.S.A. & R.S.I.,  7, p. 661; 1923
[CrossRef]

Miller,

Miller, “The Science of Musical Sounds,” 16.

Miller, Ibid, p. 145.

Raps,

Krigar-Menzel and Raps, Wied. Ann.,  44, p. 623, 1891.
[CrossRef]

Wente,

Wente, Phys. Rev. 19, p. 333; 1922.
[CrossRef]

Wente, Phys. Rev. (2)  19, p. 498; 1922.
[CrossRef]

Bell Technical Journal (1)

Fletcher, Bell Technical Journal,  2, No. 4, p. 145; 1023.
[CrossRef]

J.O.S.A. & R.S.I. (1)

Lapp, J.O.S.A. & R.S.I.,  7, p. 661; 1923
[CrossRef]

Phys. Rev. (5)

Wente, Phys. Rev. (2)  19, p. 498; 1922.
[CrossRef]

Hewlett, Phys. Rev. (2)  19, p. 52; 1922.
[CrossRef]

Knudson, Phys. Rev. 21, p. 84; 1923.
[CrossRef]

Kranz, Phys. Rev. 22, p. 66; 1923.
[CrossRef]

Wente, Phys. Rev. 19, p. 333; 1922.
[CrossRef]

Wied. Ann. (1)

Krigar-Menzel and Raps, Wied. Ann.,  44, p. 623, 1891.
[CrossRef]

Other (6)

Lamb, “Dynamical Theory of Sound,” p. 227.

Miller, “The Science of Musical Sounds,” 16.

, September, 1921.

See author’s note at the end of this paper.

Kennelly, Electrical Vibration Instruments, Macmillan, p. 405, 1923.

Miller, Ibid, p. 145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

F. 1
F. 1

Plan of the phonodeik

F. 2
F. 2

Response of phonodeik to tuning forks

F. 3
F. 3

Calibration of phonodcik

Tables (3)

Tables Icon

Table 1 Relative amplitudes of Partials of a bowed string, (Fig. 4)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

x = F ( s m ω 2 ) j r ω
y = m = 1 m = A m 2 sin 2 π m n t
2 π n 0 = s m .
11 : 8.9 : 6.45
11 : 7 : 5
11 : 7.55 : 4.9 .
ϕ = K cos θ cos 2 π n t 4 π r 2
d ϕ d t = n K cos θ sin 2 π n t 2 r 2