Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Behrens, Gilbert’s Annalen,  23, p. 24, 1806.
  2. Kleefeld, Gilberts Annalen,  34, p. 203; 1810. Bohnenberger, Annales de Chimie et de Physique,  16, p. 91; 1821. Becquerel, Annales de Chimie et de Physique,  46, p. 276; 1831. Hankel, Poggendorff’s Annalen,  103, p. 209; 1858. and others.
    [CrossRef]
  3. Bumstead, Phil. Mag. 22, p. 910; 1911. Dadourian, Phys. Rev. 14, p. 238; 1919.
    [CrossRef]
  4. Kuntz and Bayley, Phys. Rev. 17, p. 147, 1921.
    [CrossRef]
  5. W. J. G. Swann, Phys. Rev. 23, p. 779; 1924.
  6. H. W. Farwell, Am. Jr. Sci. 37, p. 319; 1914.
    [CrossRef]

1924 (1)

W. J. G. Swann, Phys. Rev. 23, p. 779; 1924.

1921 (1)

Kuntz and Bayley, Phys. Rev. 17, p. 147, 1921.
[CrossRef]

1914 (1)

H. W. Farwell, Am. Jr. Sci. 37, p. 319; 1914.
[CrossRef]

1911 (1)

Bumstead, Phil. Mag. 22, p. 910; 1911. Dadourian, Phys. Rev. 14, p. 238; 1919.
[CrossRef]

1810 (1)

Kleefeld, Gilberts Annalen,  34, p. 203; 1810. Bohnenberger, Annales de Chimie et de Physique,  16, p. 91; 1821. Becquerel, Annales de Chimie et de Physique,  46, p. 276; 1831. Hankel, Poggendorff’s Annalen,  103, p. 209; 1858. and others.
[CrossRef]

1806 (1)

Behrens, Gilbert’s Annalen,  23, p. 24, 1806.

Bayley,

Kuntz and Bayley, Phys. Rev. 17, p. 147, 1921.
[CrossRef]

Behrens,

Behrens, Gilbert’s Annalen,  23, p. 24, 1806.

Bumstead,

Bumstead, Phil. Mag. 22, p. 910; 1911. Dadourian, Phys. Rev. 14, p. 238; 1919.
[CrossRef]

Farwell, H. W.

H. W. Farwell, Am. Jr. Sci. 37, p. 319; 1914.
[CrossRef]

Kleefeld,

Kleefeld, Gilberts Annalen,  34, p. 203; 1810. Bohnenberger, Annales de Chimie et de Physique,  16, p. 91; 1821. Becquerel, Annales de Chimie et de Physique,  46, p. 276; 1831. Hankel, Poggendorff’s Annalen,  103, p. 209; 1858. and others.
[CrossRef]

Kuntz,

Kuntz and Bayley, Phys. Rev. 17, p. 147, 1921.
[CrossRef]

Swann, W. J. G.

W. J. G. Swann, Phys. Rev. 23, p. 779; 1924.

Am. Jr. Sci. (1)

H. W. Farwell, Am. Jr. Sci. 37, p. 319; 1914.
[CrossRef]

Gilbert’s Annalen (1)

Behrens, Gilbert’s Annalen,  23, p. 24, 1806.

Gilberts Annalen (1)

Kleefeld, Gilberts Annalen,  34, p. 203; 1810. Bohnenberger, Annales de Chimie et de Physique,  16, p. 91; 1821. Becquerel, Annales de Chimie et de Physique,  46, p. 276; 1831. Hankel, Poggendorff’s Annalen,  103, p. 209; 1858. and others.
[CrossRef]

Phil. Mag. (1)

Bumstead, Phil. Mag. 22, p. 910; 1911. Dadourian, Phys. Rev. 14, p. 238; 1919.
[CrossRef]

Phys. Rev. (2)

Kuntz and Bayley, Phys. Rev. 17, p. 147, 1921.
[CrossRef]

W. J. G. Swann, Phys. Rev. 23, p. 779; 1924.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

F. 3
F. 3

Solid curve: abscissae are 1/Sb; ordinates are s; dotted curve: abscissae are 1/Sc; ordinates are s; s is in cm; Sb and Sc are cm deflection ×40 per volt. V1V2=Vw=234 volts. Gold leaf 5.9 cm long, .5 mm wide.

F. 4
F. 4

Solid curve: abscissae are ( V 1 V 2 2 s ) 2 × 10 3 ; ; ordinates are V 1 V 2 2 s · 1 S b × 10 3 dotted curve: abscissae ( V w 2 s ) 2 × 10 3 ; are ordinates are V w 2 s · 1 S c × 10 3 ; Vw, V1, and V2 are in e.s.u., s = 3.23 cm, Sb and Sc are the deflections of the tip of the leaf in cm per c.s.u. Gold leaf 6.65 cm long, .45 mm wide.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

V p = e log e cosh ν l π cos x + a l π cosh y l π cos x a l π
V w = e log e cosh r l π cos 2 a l π cosh r l π 1
c = 1 log e cosh r l π cos 2 a l π cosh r l π 1
E x = V p x = e π l { sin x + a l π cosh y l π cos x + a l π sin x a l π cosh y l π cos x a l π }
E 1 = e π l sin 2 a l π cosh r l π cos 2 a l π
a = s + d and l = 2 s
E 1 = e π 2 s { ( d π / s + ) [ 1 + 1 2 ! ( r π 2 s ) 2 + ] + [ 1 1 2 ! ( d π s ) 2 + ] }
E 1 = e ( π 2 s ) 2 d
c = 1 log e [ 1 + 16 r 2 ( s 2 π 2 d 2 4 ) ]
c = 1 2 log e 4 s π r
q = c l ( V w V 1 V 2 2 s d )
F = E q
E = c V w ( π 2 s ) 2 d V 1 V 2 2 s
k d = c l [ c V w 2 ( π 2 s ) 2 d + ( V 1 V 2 2 s ) 2 d V w V 1 V 2 2 s ]
d = c l V w V 1 V 2 2 s k c l [ c V w 2 ( π 2 s ) 2 + ( V 1 V 2 2 s ) 2 ]
S b = | d V w | = | c l V 1 V 2 2 s | k c l ( V 1 V 2 2 s ) 2
S c = | d V 1 V 2 | = | c l V w 2 s | k c 2 l ( V w 2 s ) 2 π 2
mgp = a ( V w 2 s ) 2 p + β ( V 1 V 2 2 s ) 2 p c l V w V 1 V 2 2 s
S b = | p V w | = | c l V 1 V 2 2 s | m g β ( V 1 V 2 2 s ) 2
S c = | p V 1 V 2 | = | c l V w 2 s | m g α ( V w 2 s ) 2 .
V w 2 s S c = α l ( V w 2 s ) 2 + m g c l , V 1 V 2 2 s S b = β l ( V 1 V 2 2 s ) 2 + m g c l
e = 2 0 σ d y = 1 2 π 0 ( E x ) x = 0 d y
e = e 2 ( 1 d s )