Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Burgess: High Temperature Measurement,. p 291. Glazebrook: Dict of Applied Physics, 1, p. 643.
  2. Langmuir: Phys Rev., N.S.  2, p. 138; 1915.
    [Crossref]
  3. Forsythe, J.O.S.A,  6, 496; 1921.
  4. Foote, Fairchild, and Harrison: , p. 100.
  5. Waidner and Burgess: Bull B.S. 6, p. 189; 1909.
  6. Mendenhall: Phys. Rev. 33, p. 74; 1911.
  7. Foote and Fairchild: A.I.M.M.E. Symposium, p. 331; 1920.
  8. Henning: ZS. f. Instru.,  30, p. 61; 1910.
  9. Forsythe: J.O.S.A. 5, p. 85; 1921.
    [Crossref]
  10. Good glass screens of various color can be obtained from the Corning Glass Works at Corning, N. Y. The set of Wratten and Wainwright screens made by the Eastman Kodak Co. will be found very useful.
  11. Jones: J. Frank. Inst.,  183, p. 500; 1917.
    [Crossref]
  12. Hyde, Cady, and Forsythe: Astrophys. J,  42, p. 294; 1915.
    [Crossref]
  13. Forsythe: J.O.S.A.,  4, p. 322; 1920.
    [Crossref]
  14. Forsythe: Chem. & Met. Eng. 22, p. 1211; 1920.
  15. Cady: Trans. I.E.S.,  16, p. 138; 1921.
  16. Hyde, Cady, and Forsythe: Astrophys. J.,  42, p. 303; 1915.
  17. Hyde: A.I.M.M.E. Symposium, p. 285; 1920.
  18. This calibration was made for Mr. McKay of the Research Laboratory of the General Electric Co. at Schenectady.
  19. Worthing: Phys. Rev., N. S.  10, 377, 1917.
    [Crossref]
  20. Mendenhall: Astrophys. J. 33, p. 91, 1911.
    [Crossref]
  21. Spence: Astrophys. J.,  37, p. 194; 1913.
    [Crossref]
  22. Fairchild: J.O.S.A.,  4, p. 496; 1920.
    [Crossref]
  23. Trans. Faraday Soc.,  15, p. 21; 1920.
    [Crossref]
  24. Schuster, “Theory of Optics,” p. 152; 1909.
  25. Worthing and Forsythe: Phys. Rev.,  4, p. 163; 1914.
    [Crossref]
  26. Fairchild: J.O.S.A.& R.S.I.,  7, p. 543; 1923.
    [Crossref]
  27. Trans. I.E.S.,  13, p. 523; 1918.

1923 (1)

Fairchild: J.O.S.A.& R.S.I.,  7, p. 543; 1923.
[Crossref]

1921 (3)

Forsythe, J.O.S.A,  6, 496; 1921.

Forsythe: J.O.S.A. 5, p. 85; 1921.
[Crossref]

Cady: Trans. I.E.S.,  16, p. 138; 1921.

1920 (6)

Forsythe: J.O.S.A.,  4, p. 322; 1920.
[Crossref]

Forsythe: Chem. & Met. Eng. 22, p. 1211; 1920.

Hyde: A.I.M.M.E. Symposium, p. 285; 1920.

Fairchild: J.O.S.A.,  4, p. 496; 1920.
[Crossref]

Trans. Faraday Soc.,  15, p. 21; 1920.
[Crossref]

Foote and Fairchild: A.I.M.M.E. Symposium, p. 331; 1920.

1918 (1)

Trans. I.E.S.,  13, p. 523; 1918.

1917 (2)

Jones: J. Frank. Inst.,  183, p. 500; 1917.
[Crossref]

Worthing: Phys. Rev., N. S.  10, 377, 1917.
[Crossref]

1915 (3)

Hyde, Cady, and Forsythe: Astrophys. J.,  42, p. 303; 1915.

Hyde, Cady, and Forsythe: Astrophys. J,  42, p. 294; 1915.
[Crossref]

Langmuir: Phys Rev., N.S.  2, p. 138; 1915.
[Crossref]

1914 (1)

Worthing and Forsythe: Phys. Rev.,  4, p. 163; 1914.
[Crossref]

1913 (1)

Spence: Astrophys. J.,  37, p. 194; 1913.
[Crossref]

1911 (2)

Mendenhall: Astrophys. J. 33, p. 91, 1911.
[Crossref]

Mendenhall: Phys. Rev. 33, p. 74; 1911.

1910 (1)

Henning: ZS. f. Instru.,  30, p. 61; 1910.

1909 (1)

Waidner and Burgess: Bull B.S. 6, p. 189; 1909.

Burgess,

Waidner and Burgess: Bull B.S. 6, p. 189; 1909.

Burgess: High Temperature Measurement,. p 291. Glazebrook: Dict of Applied Physics, 1, p. 643.

Cady,

Cady: Trans. I.E.S.,  16, p. 138; 1921.

Hyde, Cady, and Forsythe: Astrophys. J.,  42, p. 303; 1915.

Hyde, Cady, and Forsythe: Astrophys. J,  42, p. 294; 1915.
[Crossref]

Fairchild,

Fairchild: J.O.S.A.& R.S.I.,  7, p. 543; 1923.
[Crossref]

Fairchild: J.O.S.A.,  4, p. 496; 1920.
[Crossref]

Foote and Fairchild: A.I.M.M.E. Symposium, p. 331; 1920.

Foote, Fairchild, and Harrison: , p. 100.

Foote,

Foote and Fairchild: A.I.M.M.E. Symposium, p. 331; 1920.

Foote, Fairchild, and Harrison: , p. 100.

Forsythe,

Forsythe, J.O.S.A,  6, 496; 1921.

Forsythe: J.O.S.A. 5, p. 85; 1921.
[Crossref]

Forsythe: J.O.S.A.,  4, p. 322; 1920.
[Crossref]

Forsythe: Chem. & Met. Eng. 22, p. 1211; 1920.

Hyde, Cady, and Forsythe: Astrophys. J.,  42, p. 303; 1915.

Hyde, Cady, and Forsythe: Astrophys. J,  42, p. 294; 1915.
[Crossref]

Worthing and Forsythe: Phys. Rev.,  4, p. 163; 1914.
[Crossref]

Harrison,

Foote, Fairchild, and Harrison: , p. 100.

Henning,

Henning: ZS. f. Instru.,  30, p. 61; 1910.

Hyde,

Hyde: A.I.M.M.E. Symposium, p. 285; 1920.

Hyde, Cady, and Forsythe: Astrophys. J.,  42, p. 303; 1915.

Hyde, Cady, and Forsythe: Astrophys. J,  42, p. 294; 1915.
[Crossref]

Jones,

Jones: J. Frank. Inst.,  183, p. 500; 1917.
[Crossref]

Langmuir,

Langmuir: Phys Rev., N.S.  2, p. 138; 1915.
[Crossref]

Mendenhall,

Mendenhall: Phys. Rev. 33, p. 74; 1911.

Mendenhall: Astrophys. J. 33, p. 91, 1911.
[Crossref]

Schuster,

Schuster, “Theory of Optics,” p. 152; 1909.

Spence,

Spence: Astrophys. J.,  37, p. 194; 1913.
[Crossref]

Waidner,

Waidner and Burgess: Bull B.S. 6, p. 189; 1909.

Worthing,

Worthing: Phys. Rev., N. S.  10, 377, 1917.
[Crossref]

Worthing and Forsythe: Phys. Rev.,  4, p. 163; 1914.
[Crossref]

A.I.M.M.E. Symposium (2)

Foote and Fairchild: A.I.M.M.E. Symposium, p. 331; 1920.

Hyde: A.I.M.M.E. Symposium, p. 285; 1920.

Astrophys. J (1)

Hyde, Cady, and Forsythe: Astrophys. J,  42, p. 294; 1915.
[Crossref]

Astrophys. J. (3)

Hyde, Cady, and Forsythe: Astrophys. J.,  42, p. 303; 1915.

Mendenhall: Astrophys. J. 33, p. 91, 1911.
[Crossref]

Spence: Astrophys. J.,  37, p. 194; 1913.
[Crossref]

Bull B.S. (1)

Waidner and Burgess: Bull B.S. 6, p. 189; 1909.

Chem. & Met. Eng. (1)

Forsythe: Chem. & Met. Eng. 22, p. 1211; 1920.

J. Frank. Inst. (1)

Jones: J. Frank. Inst.,  183, p. 500; 1917.
[Crossref]

J.O.S.A (1)

Forsythe, J.O.S.A,  6, 496; 1921.

J.O.S.A. (3)

Forsythe: J.O.S.A.,  4, p. 322; 1920.
[Crossref]

Forsythe: J.O.S.A. 5, p. 85; 1921.
[Crossref]

Fairchild: J.O.S.A.,  4, p. 496; 1920.
[Crossref]

J.O.S.A.& R.S.I. (1)

Fairchild: J.O.S.A.& R.S.I.,  7, p. 543; 1923.
[Crossref]

Phys Rev. (1)

Langmuir: Phys Rev., N.S.  2, p. 138; 1915.
[Crossref]

Phys. Rev. (3)

Mendenhall: Phys. Rev. 33, p. 74; 1911.

Worthing: Phys. Rev., N. S.  10, 377, 1917.
[Crossref]

Worthing and Forsythe: Phys. Rev.,  4, p. 163; 1914.
[Crossref]

Trans. Faraday Soc. (1)

Trans. Faraday Soc.,  15, p. 21; 1920.
[Crossref]

Trans. I.E.S. (2)

Trans. I.E.S.,  13, p. 523; 1918.

Cady: Trans. I.E.S.,  16, p. 138; 1921.

ZS. f. Instru. (1)

Henning: ZS. f. Instru.,  30, p. 61; 1910.

Other (5)

Burgess: High Temperature Measurement,. p 291. Glazebrook: Dict of Applied Physics, 1, p. 643.

Foote, Fairchild, and Harrison: , p. 100.

Good glass screens of various color can be obtained from the Corning Glass Works at Corning, N. Y. The set of Wratten and Wainwright screens made by the Eastman Kodak Co. will be found very useful.

Schuster, “Theory of Optics,” p. 152; 1909.

This calibration was made for Mr. McKay of the Research Laboratory of the General Electric Co. at Schenectady.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

F. 1
F. 1

Diagram of arrangements on disappearing-filament optical pyrometer A—Background. B—Objective lens. C—Entrance cone diaphragm. D—Pyrometer filament. E—Eyepiece diaphragm. F—Eyepiece. G—Monochromatic filter.

F. 2
F. 2

Diagrammatic sketch of spectral pyrometer.

F. 3
F. 3

Spectral transmission of various red glasses. Curve C for Jena red 4512, 2.93 mm thick.Curve E for Jena red 2745, 3.2 mm thick.Curve A for Coming high transmission red, marked 150 per cent, 5 mm thick.Curve B for Corning high transmission red, marked 50 per cent, 5 mm thick.Curve D for Corning high transmission red, marked 28 per cent, 6 mm thick.

F. 4
F. 4

Spectral transmission of different screens. Curve B, two thicknesses blue uviol glass, total thickness 3.9mm.Curve G, two thicknesses green glass, total thickness 5.2 mm.Curve R, two thicknesses Jena red glass, total thickness 6.8 mm.

F. 5
F. 5

Effective wave-length for Jena red glass. Curve A, effective wave-length from 1300°K to other temperatures.Curve B, effective wave-length from 1800 to other temperatures.Curve D, effective wave-length from 2400 to other temperatures.Curve E, effective wave-length from 3600 to other temperatures.Curve C, limiting effective wave-length.

F. 6
F. 6

Spectral transmission of various absorbing glasses. Curve B—Jena absorbing glass 1.5 mm thick.C—Noviweld obtained from Corning Glass Works. Shade about 6.D—Leeds and Northrup absorbing glass made of purple and green glass.

F. 7
F. 7

Total transmission of absorbing glasses, as a function of temperature when used with red glass 4,512, 5.8 mm thick. Curve A—Two pieces Jena absorbing glass.Curve B—One piece Jena absorbing glass.Curve C—Noviweld glass from Corning Glass Works.

F. 8
F. 8

Spectral transmission of two absorbing screens (Curves A & B), and the spectral transmission of the two together (Curve C).

F. 9
F. 9

Total transmission for red radiation of the absorbing screen whose spectral transmission is shown by curve A, Fig. 8, and of two absorbing glasses whose spectral transmission is shown by curve C, Fig. 8.

F. 10
F. 10

Wedge opening used by Mendenhall for true-temperature measurements.

Tables (7)

Tables Icon

Table 1 Temperatures corresponding to different Percentages cf the radiation from a black body held at the temperature of melting palladium (1829°K) using a red glass with an effective wave-length which varies as is shown in column two. (c2 = 14330μ deg.)

Tables Icon

Table 2 Extrapolated temperatures, using red glass, for various sectors with transmission as given. c2 = 14330μ deg.

Tables Icon

Table 3 Errors in extrapolated temperatures due to an error in the effective wave-length

Tables Icon

Table 4 Energy Ratios and Corrections to Temperatures as Calculated with Wien’s Equation to Reduce Them to What Woidd be Obtained from Planck’s Equation for λ =.665μ for Definite Values of Brightness.

Tables Icon

Table 5 Transmission of the absorbing glasses at different temperatures.

Tables Icon

Table 6 Extrapolated temperatures using red glass for one absorbing glass and for two absorbing glasses having the transmissions shown in Figs. 8 and 9. c2 = 14330μ deg.

Tables Icon

Table 7 Corrections to Add to Brightness Temperature Readings for Different Emissivity

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

0 0 J ( λ T 1 ) V λ t R d λ J ( λ T 2 ) V λ t R d λ = J ( λ T 1 ) J ( λ T 2 ) ] λ e
log R = c 2 log e λ [ 1 T 2 1 T 1 ]
T A = 0 0 J ( λ T ) V λ t R t A d λ J ( λ T ) V λ t R d λ
1 T 1 S λ = λ log c 2 log e