Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Herbert E. Ives, Phys. Rev. 38, 1209 (1931).Herbert E. Ives and H. B. Briggs, Phys. Rev. 38, 1477 (1931);Phys. Rev. 40, 802 (1932);J. O. S. A. 26, 247 (1936).
    [Crossref]
  2. Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 238 (1936);J. O. S. A. 27, 181 (1937);J. O. S. A. 27, 395 (1937).
    [Crossref]
  3. Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 247 (1936).
    [Crossref]
  4. A surface thermopile if available would have been preferable, as the exact adjustment of the monochromator slit image on the linear element, especially with invisible radiation, presents difficulties which inevitably impair the accuracy of the resulting calibration.
  5. Herbert E. Ives and H. B. Briggs, Phys. Rev. 40, 802 (1932).
    [Crossref]
  6. Thornton C. Fry, J. O. S. A. and R. S. I. 15, 137 (1927);J. O. S. A. and R. S. I. 16, 1 (1928);J. O. S. A. 22, 307 (1932).
    [Crossref]
  7. F. Laves, Naturwiss. 25, 731 (1937).

1937 (1)

F. Laves, Naturwiss. 25, 731 (1937).

1936 (2)

Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 238 (1936);J. O. S. A. 27, 181 (1937);J. O. S. A. 27, 395 (1937).
[Crossref]

Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 247 (1936).
[Crossref]

1932 (1)

Herbert E. Ives and H. B. Briggs, Phys. Rev. 40, 802 (1932).
[Crossref]

1931 (1)

Herbert E. Ives, Phys. Rev. 38, 1209 (1931).Herbert E. Ives and H. B. Briggs, Phys. Rev. 38, 1477 (1931);Phys. Rev. 40, 802 (1932);J. O. S. A. 26, 247 (1936).
[Crossref]

1927 (1)

Thornton C. Fry, J. O. S. A. and R. S. I. 15, 137 (1927);J. O. S. A. and R. S. I. 16, 1 (1928);J. O. S. A. 22, 307 (1932).
[Crossref]

Briggs, H. B.

Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 238 (1936);J. O. S. A. 27, 181 (1937);J. O. S. A. 27, 395 (1937).
[Crossref]

Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 247 (1936).
[Crossref]

Herbert E. Ives and H. B. Briggs, Phys. Rev. 40, 802 (1932).
[Crossref]

Fry, Thornton C.

Thornton C. Fry, J. O. S. A. and R. S. I. 15, 137 (1927);J. O. S. A. and R. S. I. 16, 1 (1928);J. O. S. A. 22, 307 (1932).
[Crossref]

Ives, Herbert E.

Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 247 (1936).
[Crossref]

Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 238 (1936);J. O. S. A. 27, 181 (1937);J. O. S. A. 27, 395 (1937).
[Crossref]

Herbert E. Ives and H. B. Briggs, Phys. Rev. 40, 802 (1932).
[Crossref]

Herbert E. Ives, Phys. Rev. 38, 1209 (1931).Herbert E. Ives and H. B. Briggs, Phys. Rev. 38, 1477 (1931);Phys. Rev. 40, 802 (1932);J. O. S. A. 26, 247 (1936).
[Crossref]

Laves, F.

F. Laves, Naturwiss. 25, 731 (1937).

J. O. S. A. (2)

Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 238 (1936);J. O. S. A. 27, 181 (1937);J. O. S. A. 27, 395 (1937).
[Crossref]

Herbert E. Ives and H. B. Briggs, J. O. S. A. 26, 247 (1936).
[Crossref]

J. O. S. A. and R. S. I. (1)

Thornton C. Fry, J. O. S. A. and R. S. I. 15, 137 (1927);J. O. S. A. and R. S. I. 16, 1 (1928);J. O. S. A. 22, 307 (1932).
[Crossref]

Naturwiss. (1)

F. Laves, Naturwiss. 25, 731 (1937).

Phys. Rev. (2)

Herbert E. Ives, Phys. Rev. 38, 1209 (1931).Herbert E. Ives and H. B. Briggs, Phys. Rev. 38, 1477 (1931);Phys. Rev. 40, 802 (1932);J. O. S. A. 26, 247 (1936).
[Crossref]

Herbert E. Ives and H. B. Briggs, Phys. Rev. 40, 802 (1932).
[Crossref]

Other (1)

A surface thermopile if available would have been preferable, as the exact adjustment of the monochromator slit image on the linear element, especially with invisible radiation, presents difficulties which inevitably impair the accuracy of the resulting calibration.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Rate of absorption of energy by thin films of alkali metal on Pt-Ir; || light, film thickness 10−8 cm.

Fig. 2
Fig. 2

Rate of absorption of energy by thin films of alkali metal on Pt-Ir; ⊥ light, film thickness 10−8 cm.

Fig. 3
Fig. 3

Quartz windowed cell used for photoelectric investigation of the alkali metals.

Fig. 4
Fig. 4

Photograph of a finished tube.

Fig. 5
Fig. 5

Growth of sensitivity, K on Pt-Ir. Curves numbered in order of growth. Full line represents equilibrium film response.

Fig. 6
Fig. 6

Growth of sensitivity, Rb on Pt-Ir. Curves numbered in order of growth. Full line represents equilibrium film response.

Fig. 7
Fig. 7

Growth of sensitivity, Cs on Pt-Ir. Curves numbered in order of growth. Full line represents equilibrium film response.

Fig. 8
Fig. 8

Comparison of observed photoelectric emission (subscript o) for equilibrium film thickness, and calculated energy absorption (subscript c) for film thickness of 10−8 cm; ‖ case, for K, Rb and Cs on Pt-Ir.

Fig. 9
Fig. 9

Variation in rate of absorption of energy at the surface with increasing thickness of rubidium on Pt-Ir. Numbers of lower group correspond with those of upper group.

Fig. 10
Fig. 10

Full curve represents νν0 plotted against wave-length for long wave limit of 6000A. Points give specific emissivity for rubidium, || case.

Fig. 11
Fig. 11

Comparison of computed and observed emissions for rubidium on Pt-Ir, || case. Full line is photoelectric emission for equilibrium film; dash and dot is energy absorption for film 10−6 cm thick; dashed curve is the energy absorption modified by the νν0 factor.

Fig. 12
Fig. 12

Full curve represents νν0 plotted against wave-length for long wave limit of 6900A. Points give specific emissivity for cesium on Pt-Ir, || case.

Fig. 13
Fig. 13

Comparison of computed and observed emissions for cesium on Pt-Ir, || case. Full line is photoelectric emission for equilibrium film; dashed curve is energy absorption for film 8×10−7 cm thick; dash and dot same after applying νν0 correction.

Fig. 14
Fig. 14

Full curve represents νν0 plotted against wave-length for long wave limit of 5800A. Points give specific emissivity for potassium on Pt-Ir, || case.

Fig. 15
Fig. 15

Comparison of computed and observed emissions for potassium on Pt-Ir, || case. Full curve is photoelectric emission for equilibrium film; dashed curve is energy absorption for film 7×10−7 cm thick; dash and dot same after shifting 140A and applying νν0 correction.