Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Bélopolski and Galitzen, Acad. Sci. St. Petersburg Bull. 8, 213 (1907).
  2. Alfred O’Rahilly, Electromagnetics (Longmans, Green and Co., 1938), p. 339.
  3. H. E. Ives, J. Opt. Soc. Am. 27, 263 (1937).
    [CrossRef]
  4. H. Bateman, Bull. Nat. Research Council, Dec., 1922, p. 110.

1937 (1)

1922 (1)

H. Bateman, Bull. Nat. Research Council, Dec., 1922, p. 110.

1907 (1)

Bélopolski and Galitzen, Acad. Sci. St. Petersburg Bull. 8, 213 (1907).

Bateman, H.

H. Bateman, Bull. Nat. Research Council, Dec., 1922, p. 110.

Bélopolski,

Bélopolski and Galitzen, Acad. Sci. St. Petersburg Bull. 8, 213 (1907).

Galitzen,

Bélopolski and Galitzen, Acad. Sci. St. Petersburg Bull. 8, 213 (1907).

Ives, H. E.

O’Rahilly, Alfred

Alfred O’Rahilly, Electromagnetics (Longmans, Green and Co., 1938), p. 339.

Acad. Sci. St. Petersburg Bull. (1)

Bélopolski and Galitzen, Acad. Sci. St. Petersburg Bull. 8, 213 (1907).

Bull. Nat. Research Council (1)

H. Bateman, Bull. Nat. Research Council, Dec., 1922, p. 110.

J. Opt. Soc. Am. (1)

Other (1)

Alfred O’Rahilly, Electromagnetics (Longmans, Green and Co., 1938), p. 339.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ν = ν ( c - v c + v ) ,
ν = ν ( c - v c + v ) n ,
ν = ν ( c + V c - V ) n ( c - ( v + V ) c + ( v + V ) ) n ,
( c + V c - V ) ( c - v - V c + v + V ) = c - v c + v .
v = v ( 1 - V 2 c 2 ) 1 + V v c 2 .
v ( 1 - V 2 c 2 ) 1 + V v c 2
v L ( v ) ,
v ( 1 - V 2 c 2 ) 1 + V v c 2 F ( V ) · L ( v + V 1 + v V c 2 ) ,
L ( v + V 1 + v V c 2 )
v + V = v ( 1 - V 2 c 2 ) 1 + V v c 2 + V = v + V 1 + v V c 2 .
v L ( v ) = v ( 1 - V 2 c 2 ) ( 1 + v V c 2 ) · F ( V ) · L ( v + V 1 + v V c 2 ) .
1 + v V c 2 = ( 1 - v 2 c 2 ) 1 2 ( 1 - V 2 c 2 ) 1 2 ( 1 - ( v + V ) 2 c 2 ( 1 + v V c 2 ) 2 ) 1 2
( 1 - v 2 c 2 ) 1 2 L ( v ) = ( 1 - V 2 c 2 ) 1 2 F ( V ) · ( 1 - ( v + V ) 2 c 2 ( 1 + v V c 2 ) 2 ) 1 2 L ( v + V 1 + V v c 2 ) ,
L ( v ) = ( 1 - v 2 c 2 ) 1 2 , L ( v + V 1 + v V c 2 ) = ( 1 - ( v + V ) 2 c 2 ( 1 + V v c 2 ) 2 ) 1 2 , F ( V ) = ( 1 - V 2 c 2 ) 1 2 .
( 1 - ( velocity velocity of light ) 2 ) 1 2 .