Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Pfund, J. Opt. Soc. Am. 24, 143 (1934).
    [CrossRef]
  2. I am indebted to Dr. C. E. Barnett of the New Jersey Zinc Company for having measured these particle-diameters by the microscope method.
  3. R. W. Wood, Physical Optics, Third edition, p. 279.
  4. The terms “interference minima” are used to replace the cumbersome phraseology: “minima of transmission caused by a maximum of destructive interference.” If further justification is required, see R. W. Wood, Physical Optics, Third edition, pp. 170, 172.
  5. Microscope measurements due to Dr. C. E. Barnett.
  6. P. Debye, Ann. d. Physik 30, 57 (1909).
    [CrossRef]
  7. G. Mie, Ann. d. Physik 25, 377 (1908).
    [CrossRef]
  8. J. A. Stratton and H. G. Houghton, Phys. Rev. 38, 159 (1931).
    [CrossRef]
  9. E. O. Hulburt, J. Opt. Soc. Am. 25, 125 (1935).
    [CrossRef]

1935 (1)

1934 (1)

1931 (1)

J. A. Stratton and H. G. Houghton, Phys. Rev. 38, 159 (1931).
[CrossRef]

1909 (1)

P. Debye, Ann. d. Physik 30, 57 (1909).
[CrossRef]

1908 (1)

G. Mie, Ann. d. Physik 25, 377 (1908).
[CrossRef]

Debye, P.

P. Debye, Ann. d. Physik 30, 57 (1909).
[CrossRef]

Houghton, H. G.

J. A. Stratton and H. G. Houghton, Phys. Rev. 38, 159 (1931).
[CrossRef]

Hulburt, E. O.

Mie, G.

G. Mie, Ann. d. Physik 25, 377 (1908).
[CrossRef]

Pfund, A. H.

Stratton, J. A.

J. A. Stratton and H. G. Houghton, Phys. Rev. 38, 159 (1931).
[CrossRef]

Wood, R. W.

The terms “interference minima” are used to replace the cumbersome phraseology: “minima of transmission caused by a maximum of destructive interference.” If further justification is required, see R. W. Wood, Physical Optics, Third edition, pp. 170, 172.

R. W. Wood, Physical Optics, Third edition, p. 279.

Ann. d. Physik (2)

P. Debye, Ann. d. Physik 30, 57 (1909).
[CrossRef]

G. Mie, Ann. d. Physik 25, 377 (1908).
[CrossRef]

J. Opt. Soc. Am. (2)

Phys. Rev. (1)

J. A. Stratton and H. G. Houghton, Phys. Rev. 38, 159 (1931).
[CrossRef]

Other (4)

I am indebted to Dr. C. E. Barnett of the New Jersey Zinc Company for having measured these particle-diameters by the microscope method.

R. W. Wood, Physical Optics, Third edition, p. 279.

The terms “interference minima” are used to replace the cumbersome phraseology: “minima of transmission caused by a maximum of destructive interference.” If further justification is required, see R. W. Wood, Physical Optics, Third edition, pp. 170, 172.

Microscope measurements due to Dr. C. E. Barnett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photomicrographs of TiO2 (linear magnification 1200×): (a) mosaic film showing brilliant colors, (b) particles dispersed—no colors.

Fig. 2
Fig. 2

Spectral transmission curves for films shown in Fig. 1: A—mosaic film, covered with linseed oil, B—pigment particles dispersed in linseed oil.

Fig. 3
Fig. 3

Spectral transmission curves showing shift of minimum toward longer wave-lengths with increase in particle-size: A—fine ZnS, particle diameter 0.39μ, B—finished ZnS, particle diameter 0.51, C—S.W.L., particle diameter 0.67.

Fig. 4
Fig. 4

Showing the shift of the transmission minimum toward shorter wave-lengths as the refractive index of the medium covering the film is increased: A—mosaic film of S.W.L., medium, air, B—mosaic film of S.W.L., medium amyl alcohol, n = 1.408.

Fig. 5
Fig. 5

Schematic replacement of a pigment “island” by a uniform plate of thickness t and refractive index μ2.

Fig. 6
Fig. 6

Transmission curves showing shift of the minimum for a mosaic film upon changing the angle of incidence: A—dry TiO2 mosaic film; angle of incidence = 0, B—dry TiO2 mosaic film; angle of incidence = 48°, C—dispersed ZnS; angle of incidence = 0, D—dispersed ZnS; angle of incidence = 48°.

Fig. 7
Fig. 7

Showing the Stratton and Houghton curve (A) of scattering by small water droplets (μ = 1.33). The dotted curve B shows, qualitatively, the variation of transmission resulting from a change of λ/r, where λ = wave-length of light and r = radius of water-droplet.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ = ( μ 2 - μ 1 ) t = n λ / 2 ,             n = 1 , 3 , 5 etc . ,     ,
t = λ / 2 ( μ 2 - μ 1 )
μ 2 = μ 1 λ 0 - μ 0 λ 1 λ 0 - λ 1
i 1 = 0 ,     Δ = ( μ - 1 ) t = n · λ 1 / 2 ,
i 2 > 0 ,     Δ = t / ( cos r 2 ) ( μ - cos ( i 2 - r 2 ) ) = n λ 2 / 2 ,