Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.O.S.A. 20, 396; 1930.
  2. Trans. I.E.S.,  25, 378; 1930.
  3. F. Benford, J. Mot. Pic. Eng. 14, 414; 1930.
  4. N. T. Gordon and F. Benford, G. E. Rev. 33, 289; 1930.
  5. W. E. Forsythe, B. T. Barnes, M. A. Easley, and G. E. Rev, G. E. Rev. 33, 359; 1930.
  6. B. T. Barnes, Phys. Rev.,  36, 1468; 1930.
  7. M. Luckiesh, J.O.S.A.,  19, 1; 1929.
    [Crossref]
  8. Anderson, Fraser, and Bird, J.O.S.A. 17, 460; 1928.
    [Crossref]
  9. CompareW. W. Coblentz, J. Am. Med. Assn. 95, 411; 1930.
    [Crossref]

1930 (4)

F. Benford, J. Mot. Pic. Eng. 14, 414; 1930.

N. T. Gordon and F. Benford, G. E. Rev. 33, 289; 1930.

W. E. Forsythe, B. T. Barnes, M. A. Easley, and G. E. Rev, G. E. Rev. 33, 359; 1930.

CompareW. W. Coblentz, J. Am. Med. Assn. 95, 411; 1930.
[Crossref]

1929 (1)

M. Luckiesh, J.O.S.A.,  19, 1; 1929.
[Crossref]

1928 (1)

Anderson, Fraser, and Bird, J.O.S.A. 17, 460; 1928.
[Crossref]

Anderson,

Anderson, Fraser, and Bird, J.O.S.A. 17, 460; 1928.
[Crossref]

Barnes, B. T.

W. E. Forsythe, B. T. Barnes, M. A. Easley, and G. E. Rev, G. E. Rev. 33, 359; 1930.

B. T. Barnes, Phys. Rev.,  36, 1468; 1930.

Benford, F.

F. Benford, J. Mot. Pic. Eng. 14, 414; 1930.

N. T. Gordon and F. Benford, G. E. Rev. 33, 289; 1930.

Bird,

Anderson, Fraser, and Bird, J.O.S.A. 17, 460; 1928.
[Crossref]

Coblentz, W. W.

CompareW. W. Coblentz, J. Am. Med. Assn. 95, 411; 1930.
[Crossref]

Easley, M. A.

W. E. Forsythe, B. T. Barnes, M. A. Easley, and G. E. Rev, G. E. Rev. 33, 359; 1930.

Forsythe, W. E.

W. E. Forsythe, B. T. Barnes, M. A. Easley, and G. E. Rev, G. E. Rev. 33, 359; 1930.

Fraser,

Anderson, Fraser, and Bird, J.O.S.A. 17, 460; 1928.
[Crossref]

Gordon, N. T.

N. T. Gordon and F. Benford, G. E. Rev. 33, 289; 1930.

Luckiesh, M.

M. Luckiesh, J.O.S.A.,  19, 1; 1929.
[Crossref]

Rev, G. E.

W. E. Forsythe, B. T. Barnes, M. A. Easley, and G. E. Rev, G. E. Rev. 33, 359; 1930.

G. E. Rev. (2)

N. T. Gordon and F. Benford, G. E. Rev. 33, 289; 1930.

W. E. Forsythe, B. T. Barnes, M. A. Easley, and G. E. Rev, G. E. Rev. 33, 359; 1930.

J. Am. Med. Assn. (1)

CompareW. W. Coblentz, J. Am. Med. Assn. 95, 411; 1930.
[Crossref]

J. Mot. Pic. Eng. (1)

F. Benford, J. Mot. Pic. Eng. 14, 414; 1930.

J.O.S.A. (3)

M. Luckiesh, J.O.S.A.,  19, 1; 1929.
[Crossref]

Anderson, Fraser, and Bird, J.O.S.A. 17, 460; 1928.
[Crossref]

J.O.S.A. 20, 396; 1930.

Phys. Rev. (1)

B. T. Barnes, Phys. Rev.,  36, 1468; 1930.

Trans. I.E.S. (1)

Trans. I.E.S.,  25, 378; 1930.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

F. 1
F. 1

General arrangement of electrodes and filament of the Type S − 1 lamp.

F. 2
F. 2

Volt-ampere curve for Type S − 1 lamp. Section ODA tungsten filament character istic followed when arc is not operating. Section PBC arc characteristic. Arc starts when point A is reached passing quickly to the operating condition indicated by point B. Arc does not break till point C is reached. Lamp voltage and current change at once to those given by point D.

F. 3
F. 3

Transmission for piece 1 mm thick of special glass used for bulb of Type S − 1 lamp.

F. 4
F. 4

The continuous curve shows the distribution of energy below 3200A that reaches the earth’s surface from the sun (ordinate: energy flux density per 100A). The heavy portion of the vertical lines shows the energy flux density of the mercury lines at a distance of one meter from the Type S − 1 lamp, and the total length of the lines shows the energy flux density at a distance of one meter from the lamp in the regular reflector.

F. 5
F. 5

Spectral transmission of purple corex and of special glass screen.

F. 6
F. 6

The variation of ultraviolet radiation below 3200A with the time after the lamp is turned on. The upper curve is for the lamp in the normal position with the base up and the lower curve is for the base down—115 volts applied to the primary of the transformer.

F. 7
F. 7

Variation of the ultraviolet radiation below 3200A with the voltage applied to the primary of the transformer, Curve 1. In Curve 2 is shown the variation of the secondary current, and in Curve 3 is shown the variation of the secondary voltage wider the same conditions.

F. 8
F. 8

Intensity vs. primary voltage for the four strongest ultraviolet lines.

F. 9
F. 9

Variation of the ultraviolet radiation below 3200A as the lamp is rotated around a vertical axis. The 10° and 190° points show the relative energy in a direction from the center of the arc perpendicular to the plane of the leads with 115 volts applied to the primary of the transformer.

F. 10
F. 10

Variation of ultraviolet radiation below 3200A at one meter distance from the lamp in a plane perpendicularly bisecting the axis of the arc terminals. The zero position is directly under the lamp. 115 volts applied to the primary of the transformer.

F. 11
F. 11

In Curve 1 is shown the variation of the ultraviolet energy below 3200A as a function of the temperature of the mercury, in Curve 2 the variation of the secondary current, and in Curve 3 the variation of the voltage across the lamp—with 115 volts applied to the primary of the transformer.

F. 12
F. 12

Relative intensity vs. temperature for the four strongest ultraviolet lines from the Type S − 1 lamp—115 volts applied to the primary of the transformer. Relative input of lamp alone vs. temperature—scale at right.

Tables (5)

Tables Icon

Table 1 Average energy flux in microwatts per cm2 at one meter distance in a direction perpendicular to the plane of the leads with 115 volts on the primary of the transformer.

Tables Icon

Table 2 Computed energy flux of mercury lines in center of beam received from sunlamp unit at one meter distance from center of arc with reflector pointing downward. 115 volts on primary of transformer.

Tables Icon

Table 3 Energy flux in microvolts per cm2 in definite wave-length regions for the type S − 1 lamp, the sunlamp unit, the quartz mercury arc and the sun.

Tables Icon

Table 4 Percent of total energy flux found in different wave-length regions.

Tables Icon

Table 5 Some characteristics of the average Type S − 1 Lamp.