Abstract

Intensity measurements have been made on a complex super-multiplet of normal titanium, 5DFG′–5HGFDP′, arising from the transition [(3d)24s] 4p–4d, parent term a4F′, and on a simple super-multiplet 5DFG′–5F′ arising from the transition [(3d)24s] 4p–5s. The intensities of the latter have been found to be practically normal, the multiplet ratios being measured as 8.95:7.00:5.30, or within 6% of the theoretical values, with no self-reversal or excitation corrections needed. The complex super-multiplet has extremely anomalous intensities, as might be expected from the fact that it contains strong 5FH′ lines and that a number of lines allowed by the selection principles and usually of considerable intensity are found to be entirely missing in its multiplets. Very few lines have normal intensity ratios to one another, and in no individual multiplet is the Sum Rule fulfilled. In the super-multiplet as a whole the fulfillment of the Sum Rule is only slightly better; the average deviation of the sums from the mean is about 15%, after an excitation correction corresponding to 2080°A for the temperature of the emitting arc has been applied. No other temperature will furnish a correction making the deviation appreciably less. Kronig’s formulas for the relative intensities of the nine multiplets hold only roughly. The measurements were made rather difficult by the relative weakness of the lines and by the presence of Cyanogen bands in their neighborhood, but results from a number of sets of plates showed very good agreement, and it is believed that the average final error is considerably under 10%.

© 1929 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. de L. Kronig, Zs. für Phys.,  33, p. 261; 1925.
    [Crossref]
  2. R. de L. Kronig, Zs. für Phys.,  31, p. 885; 1925. A. Sommerfeld and H. Hönl, Sitz. Preuss. Akad. Wiss.,  9, p. 141; 1925. H. N. Russell, Proc. Nat. Acad. Sci.,  11, p. 314; 1925.
    [Crossref]
  3. L. S. Ornstein and H. C. Burger, Zs. für Phys.,  46, p. 303; 1926.
  4. W. V. Houston, Phys. Rev.,  33, p. 297; 1929.
    [Crossref]
  5. H. N. Russell and W. F. Meggers, Sci. Paper Bur. Stds., No. 558; and elsewhere.
  6. H. N. Russell, Astrophys. Jour.,  66, p. 347; 1927.
    [Crossref]
  7. H. B. Dorgelo, Phys. Zeits.,  26, p. 756; 1925.
  8. G. R. Harrison and H. Engwicht, this journal,  18, p. 287; 1929.
  9. G. R. Harrison, this journal,  17, p. 389; 1928.

1929 (2)

W. V. Houston, Phys. Rev.,  33, p. 297; 1929.
[Crossref]

G. R. Harrison and H. Engwicht, this journal,  18, p. 287; 1929.

1928 (1)

G. R. Harrison, this journal,  17, p. 389; 1928.

1927 (1)

H. N. Russell, Astrophys. Jour.,  66, p. 347; 1927.
[Crossref]

1926 (1)

L. S. Ornstein and H. C. Burger, Zs. für Phys.,  46, p. 303; 1926.

1925 (3)

H. B. Dorgelo, Phys. Zeits.,  26, p. 756; 1925.

R. de L. Kronig, Zs. für Phys.,  33, p. 261; 1925.
[Crossref]

R. de L. Kronig, Zs. für Phys.,  31, p. 885; 1925. A. Sommerfeld and H. Hönl, Sitz. Preuss. Akad. Wiss.,  9, p. 141; 1925. H. N. Russell, Proc. Nat. Acad. Sci.,  11, p. 314; 1925.
[Crossref]

Burger, H. C.

L. S. Ornstein and H. C. Burger, Zs. für Phys.,  46, p. 303; 1926.

Dorgelo, H. B.

H. B. Dorgelo, Phys. Zeits.,  26, p. 756; 1925.

Engwicht, H.

G. R. Harrison and H. Engwicht, this journal,  18, p. 287; 1929.

Harrison, G. R.

G. R. Harrison and H. Engwicht, this journal,  18, p. 287; 1929.

G. R. Harrison, this journal,  17, p. 389; 1928.

Houston, W. V.

W. V. Houston, Phys. Rev.,  33, p. 297; 1929.
[Crossref]

Kronig, R. de L.

R. de L. Kronig, Zs. für Phys.,  33, p. 261; 1925.
[Crossref]

R. de L. Kronig, Zs. für Phys.,  31, p. 885; 1925. A. Sommerfeld and H. Hönl, Sitz. Preuss. Akad. Wiss.,  9, p. 141; 1925. H. N. Russell, Proc. Nat. Acad. Sci.,  11, p. 314; 1925.
[Crossref]

Meggers, W. F.

H. N. Russell and W. F. Meggers, Sci. Paper Bur. Stds., No. 558; and elsewhere.

Ornstein, L. S.

L. S. Ornstein and H. C. Burger, Zs. für Phys.,  46, p. 303; 1926.

Russell, H. N.

H. N. Russell, Astrophys. Jour.,  66, p. 347; 1927.
[Crossref]

H. N. Russell and W. F. Meggers, Sci. Paper Bur. Stds., No. 558; and elsewhere.

Astrophys. Jour. (1)

H. N. Russell, Astrophys. Jour.,  66, p. 347; 1927.
[Crossref]

Phys. Rev. (1)

W. V. Houston, Phys. Rev.,  33, p. 297; 1929.
[Crossref]

Phys. Zeits. (1)

H. B. Dorgelo, Phys. Zeits.,  26, p. 756; 1925.

this journal (2)

G. R. Harrison and H. Engwicht, this journal,  18, p. 287; 1929.

G. R. Harrison, this journal,  17, p. 389; 1928.

Zs. für Phys. (3)

R. de L. Kronig, Zs. für Phys.,  33, p. 261; 1925.
[Crossref]

R. de L. Kronig, Zs. für Phys.,  31, p. 885; 1925. A. Sommerfeld and H. Hönl, Sitz. Preuss. Akad. Wiss.,  9, p. 141; 1925. H. N. Russell, Proc. Nat. Acad. Sci.,  11, p. 314; 1925.
[Crossref]

L. S. Ornstein and H. C. Burger, Zs. für Phys.,  46, p. 303; 1926.

Other (1)

H. N. Russell and W. F. Meggers, Sci. Paper Bur. Stds., No. 558; and elsewhere.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy level diagram, showing the relative levels of the stationary states involved in the complex and simple super-multiplets measured, with reference to the lowest level of the normal titanium atom. Each horizontal line represents five (or in two cases three) sub-levels.

Fig. 2
Fig. 2

Plot showing the common logarithms of the measured intensities of the lines in the complex super-multiplet plotted against the logarithms of their intensities calculated from the simple intensity formulas. Those lines which are normal relative to one another in a given multiplet lie on lines inclined at 45° to the axes.

Fig. 3
Fig. 3

Plot similar to Fig. 2, but for the lines of the simple super-multiplet.

Fig. 4
Fig. 4

Plot of wave-number separation Δσ of the various upper states from the lowest upper state, against the logarithm of the ratio of the sum of the intensities of lines arising from a common upper state divided by 2J+1, to this sum for the lowest upper state divided by 2J+1. The line as drawn represents a temperature of 2080°; the deviation of the points shows that the line sums are extremely anomalous.

Fig. 5
Fig. 5

Intensities of multiplets in the complex super-multiplet, after a temperature correction for 2080° has been applied. The first numbers in each square represent the intensities calculated from Kronig’s formulas; the numbers added or subtracted represent the deviation of measured values from computed.

Fig. 6
Fig. 6

Plot showing the effect of the 2080° excitation correction on the relative intensities of the multiplets in the complex super-multiplet. Crosses represent uncorrected, circles corrected values. No temperature correction would make the points lie on the 45° line, indicating that the intensities are truly anomalous.

Tables (14)

Tables Icon

Table 4 Multiplet 214.

Tables Icon

Table 5 Multiplet 225.

Tables Icon

Table 6 Multiplet 234.

Tables Icon

Table 7 Multiplet 237.

Tables Icon

Table 8 Multiplet 244.

Tables Icon

Table 9 Multiplet 253.

Tables Icon

Table 10 Multiplet 254.

Tables Icon

Table 11 Multiplet 258.

Tables Icon

Table 12 Multiplet 278.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = e - E 1 / K T e - E 2 / K T = e h c / K T ( σ 2 - σ 1 )