Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. See, for example, Southall’sMirrors, Prisms and Lenses (The Macmillan Company, New York, 1918), Article 193.

Southall’s,

See, for example, Southall’sMirrors, Prisms and Lenses (The Macmillan Company, New York, 1918), Article 193.

Other (1)

See, for example, Southall’sMirrors, Prisms and Lenses (The Macmillan Company, New York, 1918), Article 193.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (23)

Equations on this page are rendered with MathJax. Learn more.

F 1 = ( n 1 ) R 1 , F 2 = ( n 1 ) R 2 ,
F 1 = F 1 + F 2 c F 1 , F 2 ,
α F 1 2 + β F 1 + γ = 0 , ( d = 0 , U 1 = 0 ) ;
α = n + 2 n ( n 1 ) 2 F , β = { α F + 2 ( n + 1 ) n ( n + 1 ) Z } F , γ = ( F n 1 + Z ) 2 F .
F 1 = ( n + 2 ) F + 2 ( n 2 1 ) Z ± ( n + 2 ) ( 2 3 n ) F 2 4 ( n 1 ) 2 ( n + 2 ) F Z + 4 ( n 1 ) 2 Z 2 2 ( n + 2 )
2 ( n 1 ) 2 3 n 2 Z , + 2 n 2 ( n + 2 ) ( 3 n 2 ) Z ;
( n + 2 ) ( 3 n 2 ) { n + ( n + 2 ) ( n 1 ) 2 ± n 2 + ( n 1 ) 2 ( n + 2 ) ( n 3 4 n + 4 ) } .
F = 2 ( n 1 ) 3 n 2 { ( n 1 ) ± n n n + 2 } Z ;
F = n 1 n ( n + 1 ) 1 Z , F 1 = n 2 F .
c 2 F 1 5 { n c ( n + 2 ) 2 c S 1 + 1 } c F 1 4 + { c S 1 2 2 ( n 2 c + n c + 1 ) S 1 + n ( 2 n 2 c + n c + 2 n + 4 ) } c F 1 3 { ( n 2 c + 2 n c n 2 + 1 ) c S 1 2 + 2 n ( n 2 2 n 2 c n c n 3 ) c S 1 + n ( n 3 c 2 + 4 n 2 c + 2 n c + n + 2 ) } F 1 2 { n ( 2 n 2 2 n 2 c n c 2 ) c S 1 2 + 2 n ( n 3 c 2 n 3 c + 3 n 2 c + n c n 2 + 1 ) S 1 n 2 ( 2 n 2 c + 2 n + 1 ) } F 1 n 2 { ( n 2 c 2 2 n 2 c + 2 n c + n 2 2 n + 1 ) S 1 2 2 n ( n c n + 1 ) S 1 + n 2 = 0 , ( F = 1 , U 1 = 0 ) .
{ ( F 1 3 X ) c 2 + ( n 1 ) ( n 3 n F 1 F 1 2 + X n ) c n 2 ( n 1 ) 2 } S 1 2 + 2 { ( F 1 3 X + n F 1 2 ) c 2 F 1 ( F 1 3 X + Y F 1 ) c + Y } S 1 X ( 1 c F 1 ) c ( 1 c ) ( F 1 3 X ) F 1 = 0 , ( F = 1 , U 1 = 0 ) ,
{ ( F 1 3 X ) ( S 1 + F 1 ) 2 + 2 n S 1 F 1 3 } c 2 { ( n 1 ) ( F 1 2 + n F 1 n 3 X n ) S 1 2 + 2 ( F 1 3 X + Y F 1 ) S 1 + F 1 ( F 1 3 2 X ) } c n 2 ( n 1 ) 2 S 1 2 2 Y S 1 X = 0 , ( F = 1 , U 1 = 0 ) ;
X = n { ( n + 2 ) F 1 2 n ( 2 n + 1 ) F 1 + n 3 } , Y = n ( n 1 ) { ( n + 1 ) F 1 + n 2 } .
F 1 5 + A F 1 4 + B F 1 3 + C F 1 2 + D F 1 + E = 0 ,
log A = 2.1334844 , log B = 2.6949651 , log C = 4.8645063 , log D = 5.7627989 + , log E = 6.00885579 .
F 1 = 2.74162 dptr . , ( F = 1 dptr . ) .
F = + 4.250 dptr . , n = 1.52 , d = 3.5294 mm , A 1 Z = + 33.6129 mm ;
F = + 6.0000 dptr . , n = 1.52 , d = 3.0000 mm , A 1 Z = + 36.5853 mm ;
F = + 6.0000 dptr . , n = 1.52 , d = 5.0605 mm , A 1 Z = + 41.1523 mm ;
F = + 6.0000 dptr . , n = 1.52 , d = 6.1122 mm , A 1 Z = + 41.6667 mm ;
F = 8.5000 dptr . , n = 1.52 , d = 1.7647 mm , A 1 Z = + 23.5294 mm ;
P Q = 1.0746 mm .
( n n 1 F Z ) 2 + n + 2 n ( n + 2 ) 2 F 2 2 2 n + 1 ( n 2 ) 2 F 2 F + 2 ( n + 1 ) n ( n + 1 ) 2 Z F 2 = 0 .