Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Opt. Soc. America,  4, 148–159, 1920.
    [Crossref]
  2. Ann. d. Phys. und Chem.,  143, 272, 1871.
  3. Ann. d. Phys. und Chem., N. F.,  45, 238, 1892; Ann. d. Phys. und Chem.,  53, 555, 1894.
  4. Ann. d. Phys. und Chem.,  45, 648, 1892. See also Hovestadt, Jenaer Glas, pp. 46–48. Jena, 1900.
  5. Rivista d’Ottica e Meccanica di Precisione, I,  54–57, 1919.
  6. Ann. d. Phys. und Chem.,  143, 272, 1871.
  7. Revista d’Ottica a Meccanica di Precisione I,  56, 1919.
  8. Proc. Roy. Soc.,  87, 190–191, 1912.
  9. Phil. Mag.,  39, 177, 1920.
    [Crossref]

1920 (2)

J. Opt. Soc. America,  4, 148–159, 1920.
[Crossref]

Phil. Mag.,  39, 177, 1920.
[Crossref]

1919 (2)

Rivista d’Ottica e Meccanica di Precisione, I,  54–57, 1919.

Revista d’Ottica a Meccanica di Precisione I,  56, 1919.

1912 (1)

Proc. Roy. Soc.,  87, 190–191, 1912.

1892 (2)

Ann. d. Phys. und Chem., N. F.,  45, 238, 1892; Ann. d. Phys. und Chem.,  53, 555, 1894.

Ann. d. Phys. und Chem.,  45, 648, 1892. See also Hovestadt, Jenaer Glas, pp. 46–48. Jena, 1900.

1871 (2)

Ann. d. Phys. und Chem.,  143, 272, 1871.

Ann. d. Phys. und Chem.,  143, 272, 1871.

Ann. d. Phys. und Chem. (4)

Ann. d. Phys. und Chem.,  143, 272, 1871.

Ann. d. Phys. und Chem., N. F.,  45, 238, 1892; Ann. d. Phys. und Chem.,  53, 555, 1894.

Ann. d. Phys. und Chem.,  45, 648, 1892. See also Hovestadt, Jenaer Glas, pp. 46–48. Jena, 1900.

Ann. d. Phys. und Chem.,  143, 272, 1871.

J. Opt. Soc. America (1)

J. Opt. Soc. America,  4, 148–159, 1920.
[Crossref]

Phil. Mag. (1)

Phil. Mag.,  39, 177, 1920.
[Crossref]

Proc. Roy. Soc. (1)

Proc. Roy. Soc.,  87, 190–191, 1912.

Revista d’Ottica a Meccanica di Precisione I (1)

Revista d’Ottica a Meccanica di Precisione I,  56, 1919.

Rivista d’Ottica e Meccanica di Precisione, I (1)

Rivista d’Ottica e Meccanica di Precisione, I,  54–57, 1919.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

In this figure the refractive indices for different wave-lengths in the infra-red, visible, and ultra-violet, as measured by H. Rubens and H. T. Simon on a series of Schott glasses are plotted as ordinates against the wave lengths as abscissæ.

Fig. 2
Fig. 2

In this figure the ratios (nr−1)/(nA−1) for a series of Schott glasses are plotted as ordinates against the squares of the frequency (1/λ2) as abscissæ.

Tables (2)

Tables Icon

Table I In this Table the differences between the tangents of the slope angles of the chords drawn between the points A′ to C, C to D, D to F, and F to G′, respectively on the dispersion curve of each glass, are listed.

Tables Icon

Table III In this Table are listed, for four Schott glasses measured by Gifford, the residuals (differences between computed and observed values) of refractive indices for different wave lengths from the Cauchy dispersion formula (Columns I) and the new formula suggested by Nutting (Columns II). In Columns I′ and II′ are listed the residuals for a straight line passing through D and G′.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n = A + B / λ 2
n - 1 = A + B / λ 2
1 n = E + E λ 2
1 n - 1 = C + D λ 2
( n - n o ) ( λ - λ o ) = C .
n C - 1 n A - 1 ,     n D - 1 n A - 1 ,     n F - 1 n A - 1 ,     n G - 1 n A - 1
n F - n D 1 / λ 2 F - 1 / λ 2 D - n D - n C 1 / λ 2 D - 1 / λ 2 C .
d n = B . d ( 1 / λ 2 ) - d n ( n - 1 ) 2 = D . d ( 1 / λ 2 ) or             d n = B . d ( 1 / λ 2 ) = - D . ( n - 1 ) 2 d ( 1 / λ 2 ) .
- ( n D - 1 ) 2 . { 1 n F - 1 - 1 n D - 1 1 λ 2 F - 1 λ 2 D - 1 n C - 1 - 1 n A - 1 1 λ 2 C - 1 λ 2 A }