Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Proc. Roy. Soc.,  87, 190–191, 1912.
  2. Phil. Mag. 39, 177, 1920.
    [CrossRef]
  3. Ann. Phys. and Chem., N. F.53, 555, 1894.
  4. For a brief account of this method of plotting reciprocals see F. E. Wright, J. Wash. Acad. Sci.,  10, 185–188, 1920.
  5. Revista d’Ottica e Meccanica di Precisione,  1, 54–57, 1919.

1920 (2)

Phil. Mag. 39, 177, 1920.
[CrossRef]

For a brief account of this method of plotting reciprocals see F. E. Wright, J. Wash. Acad. Sci.,  10, 185–188, 1920.

1919 (1)

Revista d’Ottica e Meccanica di Precisione,  1, 54–57, 1919.

1912 (1)

Proc. Roy. Soc.,  87, 190–191, 1912.

Wright, F. E.

For a brief account of this method of plotting reciprocals see F. E. Wright, J. Wash. Acad. Sci.,  10, 185–188, 1920.

J. Wash. Acad. Sci. (1)

For a brief account of this method of plotting reciprocals see F. E. Wright, J. Wash. Acad. Sci.,  10, 185–188, 1920.

Phil. Mag. (1)

Phil. Mag. 39, 177, 1920.
[CrossRef]

Proc. Roy. Soc. (1)

Proc. Roy. Soc.,  87, 190–191, 1912.

Revista d’Ottica e Meccanica di Precisione (1)

Revista d’Ottica e Meccanica di Precisione,  1, 54–57, 1919.

Other (1)

Ann. Phys. and Chem., N. F.53, 555, 1894.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

F. 1
F. 1

In this figure the ratio n D n A n G n F, which expresses in effect the length of the red end of the spectrum to that of the blue end, is plotted against the refractive index nD for a series of different types of silicate optical glasses.

F. 2
F. 2

In this figure the partial dispersions nFnD and nGnF′ of all silicate optical glasses listed by Parra-Mantois and by Schott, are plotted as ordinates against the partial dispersion nDnA as abscissae. The result in each case is a straight line.

F. 3
F. 3

In this figure the partial dispersions nrnD between the sodium line and the following wave lengths in μ: 2.4, 2.2, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.7682, 0.6563, 0.5892, 0.5349, 0.5086, 0 4861, 0.4800, 0.4678, 0.4340, 0.3610, 0.3466, 0.3403, 0.3261, 0.3133, 0.3081, 0.2980, 0.2880, 0.2837, 0.2763, are plotted as ordinates against the partial dispersions nGnD for a series of optical glasses measured by H. Rubens and H. T. Simon. The partial dispersions of the following Schott optical glasses are plotted on the diagram: O1092, light barium crown, (nD −1 51698); S204, borate glass, (nD) =1.51007); O1143, dense barium crown, (nD =1.57422); O1151, crown of high dispersion, (nD =1.52002); O451, light flint, (nD =1.57524); O469, dense flint, (nD =1.64985); O500 dense flint, (nD =1.75130); S163, extra dense flint (nD =1.88995).

Tables (3)

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

( n 4 n 3 ) ( n 4 n 3 ) ( n 2 n 1 ) ( n 2 n 1 ) = a
n 4 n 3 = a [ ( n 2 n 1 ) + b ]
( n 4 n 3 ) ( n 4 n 3 ) ( n 2 n 1 ) ( n 2 n 1 ) = f ( λ 4 ) f ( λ 3 ) f ( λ 2 ) f ( λ 1 ) = a
n 4 n 3 = f ( λ 4 ) f ( λ 3 ) f ( λ 2 ) f ( λ 1 ) [ ( n 2 n 1 ) + b ]
( n 2 n 1 ) ( n 2 n 1 ) = C [ f ( λ 2 ) f ( λ 1 ) ]
d n d x d n d x = C f ( λ )
d n d λ = c f ( λ 1 ) + F ( λ 1 )
n 1 = c . f ( λ 1 ) + F ( λ 1 ) d λ + d n 2 = c . f ( λ 2 ) + F ( λ 2 ) d λ + d n 3 = c . f ( λ 3 ) + F ( λ 3 ) d λ + d
n 2 n 1 = c ( f 2 f 1 ) + F 2 F 1 n 3 n 1 = c ( f 3 f 1 ) + F 3 F 1
n 2 n 1 f 2 f 1 n 3 n 1 f 3 f 1 = F 2 F 1 f 2 f 1 F 3 F 1 f 3 f 1
n = c e 1 / λ 2 + 0.008535 λ 0.9 + d
n = c λ 2 0.0438 + 0.008535 λ 0.9 + d
n = c ( λ .100 ) 2 + 0.00804 λ + d
n = c e 1 / λ 2 + b λ 0.9 + d n = c λ 2 0.0438 + b λ + d
1 λ 2 0.0438
1 λ 0.9
0.00853 λ 0.9