R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: I: underlying theory,” Optik 61, 247–262 (1982).

R. H. T. Bates and W. R. Fright, “Towards imaging with a speckle-interferometric optical synthesis telescope,” Mon. Not. R. Astron. Soc. 198, 1017–1031 (1982).

W. Lawton, “A numerical algorithm for 2-D wavefront reconstruction from intensity measurements in a single plane,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 94–98 (1980).

Y. M. Bruck and L. G. Sodin, “On the ambiguity of the image reconstruction problem,” Opt. Commun. 30, 304–308 (1979).

[CrossRef]

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically-degraded short-exposure photographs,” Astrophys. J. 193, L45–L48 (1974).

[CrossRef]

R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: I: underlying theory,” Optik 61, 247–262 (1982).

R. H. T. Bates and W. R. Fright, “Towards imaging with a speckle-interferometric optical synthesis telescope,” Mon. Not. R. Astron. Soc. 198, 1017–1031 (1982).

W. R. Fright and R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: III: computational examples for two dimensions,” Optik (to be published).

K. L. Garden and R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: II: one-dimensional considerations,” Optik (to be published).

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).

Y. M. Bruck and L. G. Sodin, “On the ambiguity of the image reconstruction problem,” Opt. Commun. 30, 304–308 (1979).

[CrossRef]

R. H. T. Bates and W. R. Fright, “Towards imaging with a speckle-interferometric optical synthesis telescope,” Mon. Not. R. Astron. Soc. 198, 1017–1031 (1982).

W. R. Fright and R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: III: computational examples for two dimensions,” Optik (to be published).

K. L. Garden and R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: II: one-dimensional considerations,” Optik (to be published).

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically-degraded short-exposure photographs,” Astrophys. J. 193, L45–L48 (1974).

[CrossRef]

W. Lawton, “A numerical algorithm for 2-D wavefront reconstruction from intensity measurements in a single plane,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 94–98 (1980).

Y. M. Bruck and L. G. Sodin, “On the ambiguity of the image reconstruction problem,” Opt. Commun. 30, 304–308 (1979).

[CrossRef]

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically-degraded short-exposure photographs,” Astrophys. J. 193, L45–L48 (1974).

[CrossRef]

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically-degraded short-exposure photographs,” Astrophys. J. 193, L45–L48 (1974).

[CrossRef]

R. H. T. Bates and W. R. Fright, “Towards imaging with a speckle-interferometric optical synthesis telescope,” Mon. Not. R. Astron. Soc. 198, 1017–1031 (1982).

Y. M. Bruck and L. G. Sodin, “On the ambiguity of the image reconstruction problem,” Opt. Commun. 30, 304–308 (1979).

[CrossRef]

R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: I: underlying theory,” Optik 61, 247–262 (1982).

W. Lawton, “A numerical algorithm for 2-D wavefront reconstruction from intensity measurements in a single plane,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 94–98 (1980).

C. van Schooneveld, ed., Image Formation from Coherence Functions in Astronomy (Reidel, Dordrecht, The Netherlands, 1979), Part V.

[CrossRef]

W. R. Fright and R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: III: computational examples for two dimensions,” Optik (to be published).

K. L. Garden and R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: II: one-dimensional considerations,” Optik (to be published).

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).