Abstract

The reflectances of inhomogeneous layers are usually calculated by numerical solution of Maxwell’s equations. This requires a specific model for the layer structure. We are interested here in the inverse problem: finding the refractive-index profile n(z) from ellipsometric data (ψ and Δ). We have calculated the reflectances explicitly in a first Born approximation [i.e., to first order in n(z) − n0, where n0 is the index of the pure liquid]. The effect of the reflecting wall at z = 0 is incorporated exactly. Finally, we express ψ and Δ in terms of the Fourier transform of the profile Γ(2q), where q is the normal component of the incident wave vector. The equation Γ(2q) = Γ′ + iΓ″ is complex; one can construct Γ′(2q) and Γ″(2q) in terms of the experimental ψ and Δ for all the accessible span of q vectors. For thick diffuse layers of thickness e ≫ λ/4π, this should allow for a complete reconstruction of the profile. For thin layers, e ≪ λ/4π, what are really measured are the moments Γ0 and Γ1 (of orders 0 and 1) of the index profile. To illustrate these methods, we discuss two specific examples of a slowly decreasing index profile: (1) wall effects in critical binary mixtures and (2) polymer adsorption from a good solvent.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (88)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription