Abstract

Wood’s 1910 study of the UV landscape by photography [ R. W. Wood, Photog. J. 50, 329 ( 1910)] is resumed. Through a narrow-band filter at 320 nm we find uniform skies even under broken clouds, a Rayleigh veiling that attenuates distant detail, an absence of shadows, and a low reflectivity for most natural substances (except snow). Rainbows broaden by a factor of more than 2 when the UV is included. The fact that glass is opaque at 320 nm causes cities to be dark at night in this wavelength, with astronomical consequences. The aphakic human eye (i.e., the eye after removal of its crystalline lens for a cataract condition) proves to have a practical sensitivity at 320 nm so that the aphakic observer can verify the unique character of the UV scene.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, “Photography by invisible rays,” Photog. J. 50, 329–336 (1910).
  2. E. O. Hulbert, “The ultraviolet, visible and infrared reflectivities of snow, sand and other substances,” J. Opt. Soc. Am. 17, 23–25, (1928).
    [CrossRef]
  3. G. A. Mazokhin-Porshnyakov, Insect Vision (Plenum, New York, 1969).
  4. A. L. Broadfoot and K. R. Kendall, “The airglow spectrum, 3,100–10,000Å,” J. Geophys. Res. 73, 426–428 (1968).
    [CrossRef]
  5. R. E. Silberglied, “Visualization and recording of longwave and ultraviolet reflection from natural objects,” Functional Photog. 11, 20–29 (1976).
  6. E. H. Amstein, “The effect of wave-length on the contrast of photographic plates in the ultra-violet,” J. Soc. Chem. Ind. London,  63, 172–177 (1944).
  7. J. L. Tupper, in The Theory of the Photographic Process, C. E. Mees and T. H. James, eds. (Macmillan, New York, 1966), Chap. 19, pp. 431–432.
  8. C. W. Allen, Astrophysical Quantities (Athlone, London, 1973).
  9. M. Garrison, L. E. Murray, D. D. Doda, and A. E. S. Green, “Diffuse-direct ultraviolet ratios with a compact double monochromator,” Appl. Opt. 17, 827–836 (1978).
    [CrossRef] [PubMed]
  10. F. L. Meyskens, “Rooftop recorder tracks safe sun time,” Cancer Center Newsletter (University of Arizona, Tucson, Ariz., Winter1982).
  11. D. S. Berger and F. Urbach, “A climatology of sunburning ultraviolet radiation,” Photochem. and Photobiol. 35, 187–192 (1982).
    [CrossRef]
  12. W. A. Baum and L. Dunkelman, “Horizontal attenuation of ultraviolet light by the lower atmosphere,” J. Opt. Soc. Am. 45, 166–175 (1955).
    [CrossRef]
  13. W. Livingston and D. Lynch, “Mountain shadow phenomena,” Appl. Opt. 18, 265–169 (1979).
    [CrossRef] [PubMed]
  14. D. M. Lavigne and N. A. Oritsland, “Black polar bears,” Nature (London) 251, 218–219 (1974).
    [CrossRef]
  15. G. W. Morey, The Properties of Glass (Reinhold, New York, 1954), pp. 452–453.
  16. G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
    [CrossRef] [PubMed]
  17. M. Czerny, “Physikalisches nach einer Star-Operation,” Phys. Bl. 28, 20–22 (1972).
    [CrossRef]
  18. R. M. Anderson, “Observations of an aphakic surgeon,” University of Arizona Health Sciences Center, Tucson, Arizona (personal communication, 1983).

1982 (1)

D. S. Berger and F. Urbach, “A climatology of sunburning ultraviolet radiation,” Photochem. and Photobiol. 35, 187–192 (1982).
[CrossRef]

1979 (1)

1978 (1)

1976 (1)

R. E. Silberglied, “Visualization and recording of longwave and ultraviolet reflection from natural objects,” Functional Photog. 11, 20–29 (1976).

1974 (1)

D. M. Lavigne and N. A. Oritsland, “Black polar bears,” Nature (London) 251, 218–219 (1974).
[CrossRef]

1972 (1)

M. Czerny, “Physikalisches nach einer Star-Operation,” Phys. Bl. 28, 20–22 (1972).
[CrossRef]

1968 (1)

A. L. Broadfoot and K. R. Kendall, “The airglow spectrum, 3,100–10,000Å,” J. Geophys. Res. 73, 426–428 (1968).
[CrossRef]

1955 (1)

1945 (1)

G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
[CrossRef] [PubMed]

1944 (1)

E. H. Amstein, “The effect of wave-length on the contrast of photographic plates in the ultra-violet,” J. Soc. Chem. Ind. London,  63, 172–177 (1944).

1928 (1)

1910 (1)

R. W. Wood, “Photography by invisible rays,” Photog. J. 50, 329–336 (1910).

Allen, C. W.

C. W. Allen, Astrophysical Quantities (Athlone, London, 1973).

Amstein, E. H.

E. H. Amstein, “The effect of wave-length on the contrast of photographic plates in the ultra-violet,” J. Soc. Chem. Ind. London,  63, 172–177 (1944).

Anderson, R. M.

R. M. Anderson, “Observations of an aphakic surgeon,” University of Arizona Health Sciences Center, Tucson, Arizona (personal communication, 1983).

Baum, W. A.

Berger, D. S.

D. S. Berger and F. Urbach, “A climatology of sunburning ultraviolet radiation,” Photochem. and Photobiol. 35, 187–192 (1982).
[CrossRef]

Broadfoot, A. L.

A. L. Broadfoot and K. R. Kendall, “The airglow spectrum, 3,100–10,000Å,” J. Geophys. Res. 73, 426–428 (1968).
[CrossRef]

Czerny, M.

M. Czerny, “Physikalisches nach einer Star-Operation,” Phys. Bl. 28, 20–22 (1972).
[CrossRef]

Doda, D. D.

Dunkelman, L.

Garrison, M.

Green, A. E. S.

Hulbert, E. O.

Kendall, K. R.

A. L. Broadfoot and K. R. Kendall, “The airglow spectrum, 3,100–10,000Å,” J. Geophys. Res. 73, 426–428 (1968).
[CrossRef]

Lavigne, D. M.

D. M. Lavigne and N. A. Oritsland, “Black polar bears,” Nature (London) 251, 218–219 (1974).
[CrossRef]

Livingston, W.

Lynch, D.

Mazokhin-Porshnyakov, G. A.

G. A. Mazokhin-Porshnyakov, Insect Vision (Plenum, New York, 1969).

Meyskens, F. L.

F. L. Meyskens, “Rooftop recorder tracks safe sun time,” Cancer Center Newsletter (University of Arizona, Tucson, Ariz., Winter1982).

Morey, G. W.

G. W. Morey, The Properties of Glass (Reinhold, New York, 1954), pp. 452–453.

Murray, L. E.

Oritsland, N. A.

D. M. Lavigne and N. A. Oritsland, “Black polar bears,” Nature (London) 251, 218–219 (1974).
[CrossRef]

Silberglied, R. E.

R. E. Silberglied, “Visualization and recording of longwave and ultraviolet reflection from natural objects,” Functional Photog. 11, 20–29 (1976).

Tupper, J. L.

J. L. Tupper, in The Theory of the Photographic Process, C. E. Mees and T. H. James, eds. (Macmillan, New York, 1966), Chap. 19, pp. 431–432.

Urbach, F.

D. S. Berger and F. Urbach, “A climatology of sunburning ultraviolet radiation,” Photochem. and Photobiol. 35, 187–192 (1982).
[CrossRef]

Wald, G.

G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
[CrossRef] [PubMed]

Wood, R. W.

R. W. Wood, “Photography by invisible rays,” Photog. J. 50, 329–336 (1910).

Appl. Opt. (2)

Functional Photog. (1)

R. E. Silberglied, “Visualization and recording of longwave and ultraviolet reflection from natural objects,” Functional Photog. 11, 20–29 (1976).

J. Geophys. Res. (1)

A. L. Broadfoot and K. R. Kendall, “The airglow spectrum, 3,100–10,000Å,” J. Geophys. Res. 73, 426–428 (1968).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Soc. Chem. Ind. London (1)

E. H. Amstein, “The effect of wave-length on the contrast of photographic plates in the ultra-violet,” J. Soc. Chem. Ind. London,  63, 172–177 (1944).

Nature (London) (1)

D. M. Lavigne and N. A. Oritsland, “Black polar bears,” Nature (London) 251, 218–219 (1974).
[CrossRef]

Photochem. and Photobiol. (1)

D. S. Berger and F. Urbach, “A climatology of sunburning ultraviolet radiation,” Photochem. and Photobiol. 35, 187–192 (1982).
[CrossRef]

Photog. J. (1)

R. W. Wood, “Photography by invisible rays,” Photog. J. 50, 329–336 (1910).

Phys. Bl. (1)

M. Czerny, “Physikalisches nach einer Star-Operation,” Phys. Bl. 28, 20–22 (1972).
[CrossRef]

Science (1)

G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
[CrossRef] [PubMed]

Other (6)

R. M. Anderson, “Observations of an aphakic surgeon,” University of Arizona Health Sciences Center, Tucson, Arizona (personal communication, 1983).

G. W. Morey, The Properties of Glass (Reinhold, New York, 1954), pp. 452–453.

F. L. Meyskens, “Rooftop recorder tracks safe sun time,” Cancer Center Newsletter (University of Arizona, Tucson, Ariz., Winter1982).

G. A. Mazokhin-Porshnyakov, Insect Vision (Plenum, New York, 1969).

J. L. Tupper, in The Theory of the Photographic Process, C. E. Mees and T. H. James, eds. (Macmillan, New York, 1966), Chap. 19, pp. 431–432.

C. W. Allen, Astrophysical Quantities (Athlone, London, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Six years of raw average daily diffuse + direct solar radiation, λ < 330, for Tucson. All days are plotted, clear or cloudy, except on occasions of instrument or human failure. The bell-shaped seasonal distribution arises from the cosine law and sec z factors. An important role for the diffuse component is inferred.

Fig. 2
Fig. 2

The Catalina Mountains near Tucson photographed from distances of 0, 1.5, 6, 11, 23, and 34 km at (a) 320 nm and (b) 650 nm. The day was exceptionally clear.

Fig. 3
Fig. 3

Shadow of Kitt Peak 5 min before sunset is not detectable at (a) 320 nm compared with (b) 650 nm.

Fig. 4
Fig. 4

Shadow of Kitt Peak 30 min after sunrise. Although clearly visible at (b) 650 nm, the shadow is undetectable at (a) 320 nm.

Fig. 5
Fig. 5

Clouds are invisible, or greatly reduced in contrast, at (a) 320 nm compared with (b) 650 nm.

Fig. 6
Fig. 6

The albedo of snow is approximately the same at (a) 320 nm as at (b) 650 nm.

Fig. 7
Fig. 7

Ice, which appears clear at (b) 650 nm, looks more opaque, or photographically white, at (a) 320 nm.

Fig. 8
Fig. 8

Glass is opaque at (a) 320 nm and skin darkens, compared with (b) 650 nm.

Fig. 9
Fig. 9

Metropolitan Tucson at night from Kitt Peak. Comparable exposures at (a) 320 nm and (b) 400 nm.

Plate IX
Plate IX

(W. Livingston, p. 1658). Composite photo of a garden-hose bow made through the 320-nm filter, printed blue, and a Wratten 25A filter, printed red. The red resolves into the primary and first supernumerary.