Abstract

The 3p6 3d8–3p5 3d9 transitions in Sr xiii, Y xiv, Zr xv, Nb xvi, and Mo xvii have been newly measured by means of a low-inductance vacuum spark and a 10.7-m grazing-incidence spectrograph. The measurements have led to an improved analysis of this complex transition group in these ions. All levels of the combining configurations have been established. The energy parameters determined from least-squares fits to the observed levels are compared with Hartree–Fock calculations. The effective interaction αL(L + 1) for the 3p6 3d8 configuration decreases markedly with increasing ionization. The effective electrostatic interactions D1(3p3d) and X2(3p3d) for the 3p5 3d9 configuration are practically constant through the sequence.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. D. Mansfield and et al., “The XUV spectra of highly ionized molybdenum,” J. Phys. B 11, 1521–1544 (1978).
    [Crossref]
  2. M. I. Bogdanovichene and et al., “3d8–3p53d9transitions in spectra of Y xiv–Mo xvii,” Opt. Spektrosk. 49, 447–452 (1980).
  3. P. G. Burkhalter, J. Reader, and R. D. Cowan, “Spectra of Mo xiii–xviii from a laser-produced plasma and a low-inductance vacuum spark,” J. Opt. Soc. Am. 70, 912–919 (1980).
    [Crossref]
  4. J. Reader and N. Acquista, “4s–4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
    [Crossref]
  5. J. Reader, G. Luther, and N. Acquista, “Spectrum and energy levels of thirteen-times ionized molybdenum (Mo xiv),” J. Opt. Soc. Am. 69, 144–149 (1979).
    [Crossref]
  6. J. Reader and N. Acquista, “Spectrum and energy levels of ten-times ionized yttrium (Y xi),” J. Opt. Soc. Am. 69, 1285–1288 (1979).
    [Crossref]
  7. J. Reader and N. Acquista, “Spectrum and energy levels of eleven-times ionized zirconium (Zr xii),” J. Opt. Soc. Am. 69, 1659–1662 (1979).
    [Crossref]
  8. J. Reader and N. Acquista, “Spectrum and energy levels of twelve-times ionized niobium (Nb xiii),” J. Opt. Soc. Am. 70, 317–321 (1980).
    [Crossref]
  9. C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys.41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs for atomic structure calculations,” (National Technical Information Service, Springfield, Va., 1968).
    [Crossref]
  10. Optimization of the level values was done with the computer program elcalc programmed by L. J. Radziemski, Jr.
  11. L. I. Podobedova, A. A. Ramonas, and A. N. Ryabtsev, “Analysis of the spectrum of Ge vii,” Opt. Spektrosk. 49, 453–459 (1980).
  12. E. Meinders, “Revised analysis of the Cu iv spectrum,” Physica (Utrecht) 84C, 117–132 (1976).
  13. This notation for the effective electrostatic interactions is that given by J. Sugar and V. Kaufman, “Fourth spectrum of lutetium,” J. Opt. Soc. Am. 62, 562–570(1972). In our energy matrix the coefficients of D1(3p 3d) are [5]1/2/10 for 1,3P, [5]1/2/30 for 1,3D, and −[5]1/2/15 for 1,3F; the coefficients of X2(3p 3d) are 1/10 for 1P, −1/10 for 3P, −1/6 for 1D, 1/6 for 3D, −1/15 for 1F; and 1/15 for 3F.
    [Crossref]

1980 (4)

M. I. Bogdanovichene and et al., “3d8–3p53d9transitions in spectra of Y xiv–Mo xvii,” Opt. Spektrosk. 49, 447–452 (1980).

P. G. Burkhalter, J. Reader, and R. D. Cowan, “Spectra of Mo xiii–xviii from a laser-produced plasma and a low-inductance vacuum spark,” J. Opt. Soc. Am. 70, 912–919 (1980).
[Crossref]

J. Reader and N. Acquista, “Spectrum and energy levels of twelve-times ionized niobium (Nb xiii),” J. Opt. Soc. Am. 70, 317–321 (1980).
[Crossref]

L. I. Podobedova, A. A. Ramonas, and A. N. Ryabtsev, “Analysis of the spectrum of Ge vii,” Opt. Spektrosk. 49, 453–459 (1980).

1979 (3)

1978 (1)

M. W. D. Mansfield and et al., “The XUV spectra of highly ionized molybdenum,” J. Phys. B 11, 1521–1544 (1978).
[Crossref]

1977 (1)

J. Reader and N. Acquista, “4s–4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

1976 (1)

E. Meinders, “Revised analysis of the Cu iv spectrum,” Physica (Utrecht) 84C, 117–132 (1976).

1972 (1)

Acquista, N.

Bogdanovichene, M. I.

M. I. Bogdanovichene and et al., “3d8–3p53d9transitions in spectra of Y xiv–Mo xvii,” Opt. Spektrosk. 49, 447–452 (1980).

Burkhalter, P. G.

Cowan, R. D.

Froese, C.

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys.41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs for atomic structure calculations,” (National Technical Information Service, Springfield, Va., 1968).
[Crossref]

Kaufman, V.

Luther, G.

Mansfield, M. W. D.

M. W. D. Mansfield and et al., “The XUV spectra of highly ionized molybdenum,” J. Phys. B 11, 1521–1544 (1978).
[Crossref]

Meinders, E.

E. Meinders, “Revised analysis of the Cu iv spectrum,” Physica (Utrecht) 84C, 117–132 (1976).

Podobedova, L. I.

L. I. Podobedova, A. A. Ramonas, and A. N. Ryabtsev, “Analysis of the spectrum of Ge vii,” Opt. Spektrosk. 49, 453–459 (1980).

Ramonas, A. A.

L. I. Podobedova, A. A. Ramonas, and A. N. Ryabtsev, “Analysis of the spectrum of Ge vii,” Opt. Spektrosk. 49, 453–459 (1980).

Reader, J.

Ryabtsev, A. N.

L. I. Podobedova, A. A. Ramonas, and A. N. Ryabtsev, “Analysis of the spectrum of Ge vii,” Opt. Spektrosk. 49, 453–459 (1980).

Sugar, J.

J. Opt. Soc. Am. (6)

J. Phys. B (1)

M. W. D. Mansfield and et al., “The XUV spectra of highly ionized molybdenum,” J. Phys. B 11, 1521–1544 (1978).
[Crossref]

Opt. Spektrosk. (2)

M. I. Bogdanovichene and et al., “3d8–3p53d9transitions in spectra of Y xiv–Mo xvii,” Opt. Spektrosk. 49, 447–452 (1980).

L. I. Podobedova, A. A. Ramonas, and A. N. Ryabtsev, “Analysis of the spectrum of Ge vii,” Opt. Spektrosk. 49, 453–459 (1980).

Phys. Rev. Lett. (1)

J. Reader and N. Acquista, “4s–4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[Crossref]

Physica (Utrecht) (1)

E. Meinders, “Revised analysis of the Cu iv spectrum,” Physica (Utrecht) 84C, 117–132 (1976).

Other (2)

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys.41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs for atomic structure calculations,” (National Technical Information Service, Springfield, Va., 1968).
[Crossref]

Optimization of the level values was done with the computer program elcalc programmed by L. J. Radziemski, Jr.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Structure of the 3p6 3d8 configuration of Mo xvii.

Fig. 2
Fig. 2

Structure of the 3p5 3d9 configuration of Mo xvii. Levels are grouped into LS terms.

Fig. 3
Fig. 3

Structure of the 3p5 3d9 configuration of Mo xvii. Levels are grouped into jj terms.

Tables (7)

Tables Icon

Table 1 Observed 3p6 3d8–3p5 3d9 Transitions in Sr xiii, Y xiv, Zr xv, Nb xvi, and Mo xviia

Tables Icon

Table 2 Energy Levels (in cm−1) of the 3p6 3d8 and 3p5 3d9 Configurations of Sr xiii, Y xiv, Zr xv, Nb xvi, and Mo xvii

Tables Icon

Table 3 Energy Parameters (in cm−1) and Mean Errors Δ of Least-Squares Fits for the 3p6 3d8 Configurations of Sr xiii, Y xiv, Zr xv, Nb xvi, and Mo xvii.a

Tables Icon

Table 4 Percentage Compositions for the 3p6 3d8 Levels of Sr xiii, Zr xv, and Mo xvii

Tables Icon

Table 5 Energy Parameters (in cm−1) and Mean Errors Δ of Least-Squares Fits for the 3p53d9 Configurations of Sr xiii, Y xiv, Zr xv, Nb xvi, and Mo xvii

Tables Icon

Table 6 Percentage Compositions for the 3p5 3d9 Levels of Sr xiii, Zr xv, and Mo xvii

Tables Icon

Table 7 Differences between Observed Level Values and Those Calculated with the Fitted Values of the Parameters for the 3p6 3d8 and 3p5 3d9 Configurations of Sr xiii, Y xiv, Zr xv, Nb xvi, and Mo xvii (in cm−1)