Abstract

The spectra of elements Y, Zr, Nb, Mo, Ru, Rh, Pd, and Ag in the 10–100-Å range were obtained from a high-power vacuum spark and a grazing-incidence high-resolution spectrograph. The transitions 3d10–3d94p, 3d10–3d94f, 3d10–3d95p, and 3d10–3d95f were identified. The agreement with ab initio relativistic calculations is good. The relevance of the jj coupling scheme for level labeling is discussed, as is the importance of relativistic effects, by comparing the scheme with other results on high-Z atoms (up to Pt).

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zigler and et al., “Identification of the spectra of Hf xlv, Ta xlvi, W xlvii and Re xlviii in laser produced plasmas,” J. Opt. Soc. Am. 70, 129–132 (1980).
    [Crossref]
  2. A. Zigler and et al., “Nickel-like spectrum of platinum emitted from a laser produced plasma,” Phys. Lett. 75A, 343–344 (1980).
  3. P. G. Burkhalter, C. M. Dozier, and D. J. Nagel, “X-ray spectra from exploded-wire plasmas,” Phys. Rev. A15, 700–717 (1977).
  4. B. Edlén, “Spectra of highly ionized atoms,” Physica 13, 545–554 (1947).
    [Crossref]
  5. B. Edlén, in Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1964), Vol. XXVII, pp. 80–220.
  6. C. E. Moore, Atomic Energy Levels, Vol. II, NSRDS-NBS35 (National Bureau of Standards, Washington, D.C., 1971).
  7. E. Alexander and et al., “Classification of transitions in the euv spectra of Y ix–xiii, Zr x–xiv, Nb xi–xv, and Mo xii–xvi,” J. Opt. Soc. Am. 61, 508–514 (1971).
    [Crossref]
  8. M. Even-Zohar, “Some euv spectra from laser produced plasma of heavy elements,” (EURATOM, Fontenay-aux-Roses, France, 1975).
  9. J. L. Schwob and et al., “Identification of Mo xv to Mo xxxiii in the soft x-ray spectrum of TFR Tokamak,” Phys. Lett. 62A, 85–89 (1977).
  10. M. W. D. Mansfield and et al., “The XUV spectra of highly ionized molybdenum,” UKAEA preprint CLM-P506, Culham (1977); J. Phys. B 11, 1521–1544 (1978).
  11. P. G. Burkhalter, U. Feldman, and R. D. Cowan, “Transitions in highly ionized Sn spectra from a laser produced plasma,” J. Opt. Soc. Am. 64, 1058–1062 (1974).
    [Crossref]
  12. P. G. Burkhalter, D. J. Nagel, and R. R. Whitlock, “Laser produced rare earths x-ray spectra,” Phys. Rev. A 9, 2331–2336 (1974).
    [Crossref]
  13. V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, “X-ray spectroscopy of multicharged ions from laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 19, 11–50 (1978).
    [Crossref]
  14. M. Klapisch and et al., “Nickel-like spectra of Tm xlii and Yb xliii in a laser produced plasma,” Phys. Lett. 79A, 67 (1980).
  15. J. L. Schwob and B. S. Fraenkel, “Evidence for high temperature in minute plasma points from x-ray spectra of Fe xxv and Fe xxvi,” Phys. Lett. 40A, 81–83 (1972).
  16. A. Filler, J. L. Schwob, and B. S. Fraenkel, “Extreme grazing incidence spectrometer with interferometric adjustment for high resolution,” in Proceedings of the Fifth International Conference on the Vacuum Ultraviolet and Radiation Physics, M. C. Caster, M. Pouey, and N. Pouey, eds. (CNRS, Paris, 1977), Vol. III, pp. 86–88.
  17. E. Luc-Koenig, “Fonctions d’ondes atomiques relativistes dans l’approximation du champ central,” Physica 62, 393–408 (1972).
    [Crossref]
  18. M. Klapisch and et al., “The 1s–3p Kβ-like spectra of highly ionized iron,” J. Opt. Soc. Am. 67, 148–155 (1977).
    [Crossref]
  19. M. Klapisch, Ph.D. thesis, Université de Paris-Orsay, Orsay, France, 1969; “Une nouvelle methode pour le calcul des fonctions d’onde et la classification des spectres atomiques,” C. R. Acad. Sci. 265, 914–917 (1967).
  20. M. Klapisch, “A program for atomic wavefunction computations by the parametric potential method,” Comput. Phys. Commun. 2, 239–260 (1971).
    [Crossref]
  21. This program was developed by M. Klapisch, E. Luc-Koenig, and A. Bar-Shalom and is available on request from M. Klapisch, Racah Institute of Physics, Hebrew University, Jerusalem, Israel.
  22. I. P. Grant, “A program to calculate angular momentum coefficients in relativistic atomic structure—a revised version,” Comput. Phys. Commun. 11, 397–405 (1976); Comput. Phys. Commun. 13, 429–430 (1978);Comput. Phys. Commun. 14, 312 (1978).
    [Crossref]
  23. J. J. Chang, “A program to evaluate the reduced matrix elements of one particle tensor operators for configurations in jj coupling,” Comput. Phys. Commun. 7, 225–234 (1974).
    [Crossref]
  24. N. C. Pyper, I. P. Grant, and N. Beatham, “A new program for calculating matrix elements of one particle operators in jj coupling,” Comput. Phys. Commun. 15, 387–400 (1978).
    [Crossref]
  25. R. D. Cowan, “Spectra of highly ionized atoms of Tokamak interest,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1977).
    [Crossref]
  26. R. D. Cowan and D. C. Griffin, “Approximate relativistic corrections to atomic radial wavefunctions,” J. Opt. Soc. Am. 66, 1010–1013 (1976).
    [Crossref]
  27. M. Klapisch and et al., “Identification of forbidden lines in the soft x-ray spectrum of the TFR Tokamak,” Phys. Rev. Lett. 41, 403–406 (1978).
    [Crossref]
  28. D. Layzer and J. Bahcall, “Relativistic Z-dependent theory of many electron atoms,” Ann. Phys. N.Y. 17, 177–204 (1962).
    [Crossref]

1980 (3)

A. Zigler and et al., “Identification of the spectra of Hf xlv, Ta xlvi, W xlvii and Re xlviii in laser produced plasmas,” J. Opt. Soc. Am. 70, 129–132 (1980).
[Crossref]

A. Zigler and et al., “Nickel-like spectrum of platinum emitted from a laser produced plasma,” Phys. Lett. 75A, 343–344 (1980).

M. Klapisch and et al., “Nickel-like spectra of Tm xlii and Yb xliii in a laser produced plasma,” Phys. Lett. 79A, 67 (1980).

1978 (3)

N. C. Pyper, I. P. Grant, and N. Beatham, “A new program for calculating matrix elements of one particle operators in jj coupling,” Comput. Phys. Commun. 15, 387–400 (1978).
[Crossref]

V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, “X-ray spectroscopy of multicharged ions from laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 19, 11–50 (1978).
[Crossref]

M. Klapisch and et al., “Identification of forbidden lines in the soft x-ray spectrum of the TFR Tokamak,” Phys. Rev. Lett. 41, 403–406 (1978).
[Crossref]

1977 (3)

J. L. Schwob and et al., “Identification of Mo xv to Mo xxxiii in the soft x-ray spectrum of TFR Tokamak,” Phys. Lett. 62A, 85–89 (1977).

P. G. Burkhalter, C. M. Dozier, and D. J. Nagel, “X-ray spectra from exploded-wire plasmas,” Phys. Rev. A15, 700–717 (1977).

M. Klapisch and et al., “The 1s–3p Kβ-like spectra of highly ionized iron,” J. Opt. Soc. Am. 67, 148–155 (1977).
[Crossref]

1976 (2)

R. D. Cowan and D. C. Griffin, “Approximate relativistic corrections to atomic radial wavefunctions,” J. Opt. Soc. Am. 66, 1010–1013 (1976).
[Crossref]

I. P. Grant, “A program to calculate angular momentum coefficients in relativistic atomic structure—a revised version,” Comput. Phys. Commun. 11, 397–405 (1976); Comput. Phys. Commun. 13, 429–430 (1978);Comput. Phys. Commun. 14, 312 (1978).
[Crossref]

1974 (3)

J. J. Chang, “A program to evaluate the reduced matrix elements of one particle tensor operators for configurations in jj coupling,” Comput. Phys. Commun. 7, 225–234 (1974).
[Crossref]

P. G. Burkhalter, U. Feldman, and R. D. Cowan, “Transitions in highly ionized Sn spectra from a laser produced plasma,” J. Opt. Soc. Am. 64, 1058–1062 (1974).
[Crossref]

P. G. Burkhalter, D. J. Nagel, and R. R. Whitlock, “Laser produced rare earths x-ray spectra,” Phys. Rev. A 9, 2331–2336 (1974).
[Crossref]

1972 (2)

J. L. Schwob and B. S. Fraenkel, “Evidence for high temperature in minute plasma points from x-ray spectra of Fe xxv and Fe xxvi,” Phys. Lett. 40A, 81–83 (1972).

E. Luc-Koenig, “Fonctions d’ondes atomiques relativistes dans l’approximation du champ central,” Physica 62, 393–408 (1972).
[Crossref]

1971 (2)

M. Klapisch, “A program for atomic wavefunction computations by the parametric potential method,” Comput. Phys. Commun. 2, 239–260 (1971).
[Crossref]

E. Alexander and et al., “Classification of transitions in the euv spectra of Y ix–xiii, Zr x–xiv, Nb xi–xv, and Mo xii–xvi,” J. Opt. Soc. Am. 61, 508–514 (1971).
[Crossref]

1962 (1)

D. Layzer and J. Bahcall, “Relativistic Z-dependent theory of many electron atoms,” Ann. Phys. N.Y. 17, 177–204 (1962).
[Crossref]

1947 (1)

B. Edlén, “Spectra of highly ionized atoms,” Physica 13, 545–554 (1947).
[Crossref]

Alexander, E.

Bahcall, J.

D. Layzer and J. Bahcall, “Relativistic Z-dependent theory of many electron atoms,” Ann. Phys. N.Y. 17, 177–204 (1962).
[Crossref]

Beatham, N.

N. C. Pyper, I. P. Grant, and N. Beatham, “A new program for calculating matrix elements of one particle operators in jj coupling,” Comput. Phys. Commun. 15, 387–400 (1978).
[Crossref]

Boiko, V. A.

V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, “X-ray spectroscopy of multicharged ions from laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 19, 11–50 (1978).
[Crossref]

Burkhalter, P. G.

P. G. Burkhalter, C. M. Dozier, and D. J. Nagel, “X-ray spectra from exploded-wire plasmas,” Phys. Rev. A15, 700–717 (1977).

P. G. Burkhalter, D. J. Nagel, and R. R. Whitlock, “Laser produced rare earths x-ray spectra,” Phys. Rev. A 9, 2331–2336 (1974).
[Crossref]

P. G. Burkhalter, U. Feldman, and R. D. Cowan, “Transitions in highly ionized Sn spectra from a laser produced plasma,” J. Opt. Soc. Am. 64, 1058–1062 (1974).
[Crossref]

Chang, J. J.

J. J. Chang, “A program to evaluate the reduced matrix elements of one particle tensor operators for configurations in jj coupling,” Comput. Phys. Commun. 7, 225–234 (1974).
[Crossref]

Cowan, R. D.

Dozier, C. M.

P. G. Burkhalter, C. M. Dozier, and D. J. Nagel, “X-ray spectra from exploded-wire plasmas,” Phys. Rev. A15, 700–717 (1977).

Edlén, B.

B. Edlén, “Spectra of highly ionized atoms,” Physica 13, 545–554 (1947).
[Crossref]

B. Edlén, in Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1964), Vol. XXVII, pp. 80–220.

Even-Zohar, M.

M. Even-Zohar, “Some euv spectra from laser produced plasma of heavy elements,” (EURATOM, Fontenay-aux-Roses, France, 1975).

Faenov, A. Ya.

V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, “X-ray spectroscopy of multicharged ions from laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 19, 11–50 (1978).
[Crossref]

Feldman, U.

Filler, A.

A. Filler, J. L. Schwob, and B. S. Fraenkel, “Extreme grazing incidence spectrometer with interferometric adjustment for high resolution,” in Proceedings of the Fifth International Conference on the Vacuum Ultraviolet and Radiation Physics, M. C. Caster, M. Pouey, and N. Pouey, eds. (CNRS, Paris, 1977), Vol. III, pp. 86–88.

Fraenkel, B. S.

J. L. Schwob and B. S. Fraenkel, “Evidence for high temperature in minute plasma points from x-ray spectra of Fe xxv and Fe xxvi,” Phys. Lett. 40A, 81–83 (1972).

A. Filler, J. L. Schwob, and B. S. Fraenkel, “Extreme grazing incidence spectrometer with interferometric adjustment for high resolution,” in Proceedings of the Fifth International Conference on the Vacuum Ultraviolet and Radiation Physics, M. C. Caster, M. Pouey, and N. Pouey, eds. (CNRS, Paris, 1977), Vol. III, pp. 86–88.

Grant, I. P.

N. C. Pyper, I. P. Grant, and N. Beatham, “A new program for calculating matrix elements of one particle operators in jj coupling,” Comput. Phys. Commun. 15, 387–400 (1978).
[Crossref]

I. P. Grant, “A program to calculate angular momentum coefficients in relativistic atomic structure—a revised version,” Comput. Phys. Commun. 11, 397–405 (1976); Comput. Phys. Commun. 13, 429–430 (1978);Comput. Phys. Commun. 14, 312 (1978).
[Crossref]

Griffin, D. C.

Klapisch, M.

M. Klapisch and et al., “Nickel-like spectra of Tm xlii and Yb xliii in a laser produced plasma,” Phys. Lett. 79A, 67 (1980).

M. Klapisch and et al., “Identification of forbidden lines in the soft x-ray spectrum of the TFR Tokamak,” Phys. Rev. Lett. 41, 403–406 (1978).
[Crossref]

M. Klapisch and et al., “The 1s–3p Kβ-like spectra of highly ionized iron,” J. Opt. Soc. Am. 67, 148–155 (1977).
[Crossref]

M. Klapisch, “A program for atomic wavefunction computations by the parametric potential method,” Comput. Phys. Commun. 2, 239–260 (1971).
[Crossref]

M. Klapisch, Ph.D. thesis, Université de Paris-Orsay, Orsay, France, 1969; “Une nouvelle methode pour le calcul des fonctions d’onde et la classification des spectres atomiques,” C. R. Acad. Sci. 265, 914–917 (1967).

Layzer, D.

D. Layzer and J. Bahcall, “Relativistic Z-dependent theory of many electron atoms,” Ann. Phys. N.Y. 17, 177–204 (1962).
[Crossref]

Luc-Koenig, E.

E. Luc-Koenig, “Fonctions d’ondes atomiques relativistes dans l’approximation du champ central,” Physica 62, 393–408 (1972).
[Crossref]

Mansfield, M. W. D.

M. W. D. Mansfield and et al., “The XUV spectra of highly ionized molybdenum,” UKAEA preprint CLM-P506, Culham (1977); J. Phys. B 11, 1521–1544 (1978).

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Vol. II, NSRDS-NBS35 (National Bureau of Standards, Washington, D.C., 1971).

Nagel, D. J.

P. G. Burkhalter, C. M. Dozier, and D. J. Nagel, “X-ray spectra from exploded-wire plasmas,” Phys. Rev. A15, 700–717 (1977).

P. G. Burkhalter, D. J. Nagel, and R. R. Whitlock, “Laser produced rare earths x-ray spectra,” Phys. Rev. A 9, 2331–2336 (1974).
[Crossref]

Pikuz, S. A.

V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, “X-ray spectroscopy of multicharged ions from laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 19, 11–50 (1978).
[Crossref]

Pyper, N. C.

N. C. Pyper, I. P. Grant, and N. Beatham, “A new program for calculating matrix elements of one particle operators in jj coupling,” Comput. Phys. Commun. 15, 387–400 (1978).
[Crossref]

Schwob, J. L.

J. L. Schwob and et al., “Identification of Mo xv to Mo xxxiii in the soft x-ray spectrum of TFR Tokamak,” Phys. Lett. 62A, 85–89 (1977).

J. L. Schwob and B. S. Fraenkel, “Evidence for high temperature in minute plasma points from x-ray spectra of Fe xxv and Fe xxvi,” Phys. Lett. 40A, 81–83 (1972).

A. Filler, J. L. Schwob, and B. S. Fraenkel, “Extreme grazing incidence spectrometer with interferometric adjustment for high resolution,” in Proceedings of the Fifth International Conference on the Vacuum Ultraviolet and Radiation Physics, M. C. Caster, M. Pouey, and N. Pouey, eds. (CNRS, Paris, 1977), Vol. III, pp. 86–88.

Whitlock, R. R.

P. G. Burkhalter, D. J. Nagel, and R. R. Whitlock, “Laser produced rare earths x-ray spectra,” Phys. Rev. A 9, 2331–2336 (1974).
[Crossref]

Zigler, A.

A. Zigler and et al., “Nickel-like spectrum of platinum emitted from a laser produced plasma,” Phys. Lett. 75A, 343–344 (1980).

A. Zigler and et al., “Identification of the spectra of Hf xlv, Ta xlvi, W xlvii and Re xlviii in laser produced plasmas,” J. Opt. Soc. Am. 70, 129–132 (1980).
[Crossref]

Ann. Phys. N.Y. (1)

D. Layzer and J. Bahcall, “Relativistic Z-dependent theory of many electron atoms,” Ann. Phys. N.Y. 17, 177–204 (1962).
[Crossref]

Comput. Phys. Commun. (4)

M. Klapisch, “A program for atomic wavefunction computations by the parametric potential method,” Comput. Phys. Commun. 2, 239–260 (1971).
[Crossref]

I. P. Grant, “A program to calculate angular momentum coefficients in relativistic atomic structure—a revised version,” Comput. Phys. Commun. 11, 397–405 (1976); Comput. Phys. Commun. 13, 429–430 (1978);Comput. Phys. Commun. 14, 312 (1978).
[Crossref]

J. J. Chang, “A program to evaluate the reduced matrix elements of one particle tensor operators for configurations in jj coupling,” Comput. Phys. Commun. 7, 225–234 (1974).
[Crossref]

N. C. Pyper, I. P. Grant, and N. Beatham, “A new program for calculating matrix elements of one particle operators in jj coupling,” Comput. Phys. Commun. 15, 387–400 (1978).
[Crossref]

J. Opt. Soc. Am. (5)

J. Quant. Spectrosc. Radiat. Transfer (1)

V. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, “X-ray spectroscopy of multicharged ions from laser plasma,” J. Quant. Spectrosc. Radiat. Transfer 19, 11–50 (1978).
[Crossref]

Phys. Lett. (4)

M. Klapisch and et al., “Nickel-like spectra of Tm xlii and Yb xliii in a laser produced plasma,” Phys. Lett. 79A, 67 (1980).

J. L. Schwob and B. S. Fraenkel, “Evidence for high temperature in minute plasma points from x-ray spectra of Fe xxv and Fe xxvi,” Phys. Lett. 40A, 81–83 (1972).

J. L. Schwob and et al., “Identification of Mo xv to Mo xxxiii in the soft x-ray spectrum of TFR Tokamak,” Phys. Lett. 62A, 85–89 (1977).

A. Zigler and et al., “Nickel-like spectrum of platinum emitted from a laser produced plasma,” Phys. Lett. 75A, 343–344 (1980).

Phys. Rev. (1)

P. G. Burkhalter, C. M. Dozier, and D. J. Nagel, “X-ray spectra from exploded-wire plasmas,” Phys. Rev. A15, 700–717 (1977).

Phys. Rev. A (1)

P. G. Burkhalter, D. J. Nagel, and R. R. Whitlock, “Laser produced rare earths x-ray spectra,” Phys. Rev. A 9, 2331–2336 (1974).
[Crossref]

Phys. Rev. Lett. (1)

M. Klapisch and et al., “Identification of forbidden lines in the soft x-ray spectrum of the TFR Tokamak,” Phys. Rev. Lett. 41, 403–406 (1978).
[Crossref]

Physica (2)

E. Luc-Koenig, “Fonctions d’ondes atomiques relativistes dans l’approximation du champ central,” Physica 62, 393–408 (1972).
[Crossref]

B. Edlén, “Spectra of highly ionized atoms,” Physica 13, 545–554 (1947).
[Crossref]

Other (8)

B. Edlén, in Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1964), Vol. XXVII, pp. 80–220.

C. E. Moore, Atomic Energy Levels, Vol. II, NSRDS-NBS35 (National Bureau of Standards, Washington, D.C., 1971).

M. Even-Zohar, “Some euv spectra from laser produced plasma of heavy elements,” (EURATOM, Fontenay-aux-Roses, France, 1975).

M. W. D. Mansfield and et al., “The XUV spectra of highly ionized molybdenum,” UKAEA preprint CLM-P506, Culham (1977); J. Phys. B 11, 1521–1544 (1978).

M. Klapisch, Ph.D. thesis, Université de Paris-Orsay, Orsay, France, 1969; “Une nouvelle methode pour le calcul des fonctions d’onde et la classification des spectres atomiques,” C. R. Acad. Sci. 265, 914–917 (1967).

This program was developed by M. Klapisch, E. Luc-Koenig, and A. Bar-Shalom and is available on request from M. Klapisch, Racah Institute of Physics, Hebrew University, Jerusalem, Israel.

A. Filler, J. L. Schwob, and B. S. Fraenkel, “Extreme grazing incidence spectrometer with interferometric adjustment for high resolution,” in Proceedings of the Fifth International Conference on the Vacuum Ultraviolet and Radiation Physics, M. C. Caster, M. Pouey, and N. Pouey, eds. (CNRS, Paris, 1977), Vol. III, pp. 86–88.

R. D. Cowan, “Spectra of highly ionized atoms of Tokamak interest,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1977).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Edlén plot of the 3d10–3d94p-transition energies for the isoelectronic sequence of Ni; ζ is the degree of ionization plus one. Solid lines, theory. Experimental points: open circles, this work; open squares, Refs. 1, 2; open triangles, Ref. 11; open diamonds, Ref. 3; filled diamonds, Ref. 4; filled circles, AEL.

Fig. 2
Fig. 2

Composition of the lowest energy level of 3d94p J = 1 in the Ni isoelectronic sequence on a jj basis versus ζ. The quantity plotted here is the square of the eigenvectors. gf values refer to the logarithmic scale at right.

Fig. 3
Fig. 3

Details of the spectra of elements Y, Zr, Nb, Ru, Rh, Pd, and Ag from a vacuum spark. The spectra have been shifted and enlarged in such a way that the three lines of 3d10–3d94p are aligned. The other lines pertain to the Cu isoelectronic sequence.

Fig. 4
Fig. 4

Theoretical oscillator strengths gf for the 3d10–3d94p transition for part of the isoelectronic sequence versus 1/Z.

Fig. 5
Fig. 5

Edlén plot of the 3d10–3d94f transition energies for the isoelectronic sequence of Ni. Experimental points: open circles, this work; open squares, Refs. 1,2; open diamonds, Ref. 3; filled diamonds, Ref. 4; filled circles, AEL; triangles, Ref. 11.

Fig. 6
Fig. 6

Theoretical oscillator strengths gf for the 3d10–3d94f transition versus 1/Z.

Tables (5)

Tables Icon

Table 1 3d–4p Transitions in the Ni Isoelectronic Sequence

Tables Icon

Table 2 Comparison of Different Results for Mo xv 3d10–3d94p and 3d10–3d94f

Tables Icon

Table 3 3d–4f Transitions in the Ni Isoelectronic Sequence

Tables Icon

Table 4 3d10–3d95p Transitions in the Ni Isoelectronic Sequence

Tables Icon

Table 5 3d10–3d95f Transitions in the Ni Isoelectronic Sequence

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ E j = σ H ζ 2 + a j ζ + b j + c j ζ + + r j , n ζ n + ,
Δ E j - σ H ζ 2 ζ + d = a j ζ + b j ζ + d + c j ζ ( ζ + d ) + + r j , n ζ n ( ζ + d ) .