Abstract

Increment thresholds were measured for a small, briefly presented test line as a function of distance from a high-contrast abrupt luminance edge. The experiments were carried out under both stabilized and unstabilized viewing conditions to determine the role of eye movements in the “edge threshold effect.” It was found that the edge threshold effect (i.e., the rise in threshold at the luminance edge) was less pronounced under stabilized conditions. We conclude from this that a significant portion of this effect is mediated by the temporal transients that are brought about by eye movements. Little difference is found between stabilized and unstabilized conditions when the background is briefly presented. Narrow bright bands appear on the bright side of a sharp edge for unstabilized viewing, but disappear under stabilization.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Teller, “The Influence of Borders on Increment Thresholds,” Ph.D. dissertation, University of California, Berkeley, 1965 (unpublished).
  2. B. H. Crawford, “Visual Adaptation in Relation to Brief Conditioning Stimuli,” Proc. Soc. London, Ser. B 134, 283–302 (1948).
    [CrossRef]
  3. H. D. Baker, “Initial Stages of Dark and Light Adaptation,” J. Opt. Soc. Am. 53, 98–103 (1963).
    [CrossRef] [PubMed]
  4. S. Novak and G. Sperling, “Visual Threshold Near a Continuously Visible or a Briefly Presented Light-Dark Boundary,” Opt. Acta 10, 187–191(1963).
    [CrossRef]
  5. M. L. Matthews, “Appearance of Mach Bands for Short Durations and at Sharply Focussed Contours,” J. Opt. Soc. Am. 56, 1401–1402 (1966).
    [CrossRef]
  6. D. H. Kelly, “Flickering Patterns and Lateral Inhibition,” J. Opt. Soc. Am. 59, 1361–1370 (1969).
    [CrossRef]
  7. S. Petry, D. C. Hood, and F. Goodkin, “Time course of lateral inhibition in the human visual system,” J. Opt. Soc. Am. 63, 385–386 (1973).
    [CrossRef] [PubMed]
  8. Ü. Tulunay-Keesey, “Visibility of a Stabilized Target as a Function of Frequency and Amplitude of Luminance Variation,” J. Opt. Soc. Am. 59, 604–610 (1969).
    [CrossRef]
  9. Ü. Tulunay-Keesey and R. M. Jones, “Spatial Sensitization as a Function of Delay,” Vision Res. 17, 1191–1199 (1977).
    [CrossRef] [PubMed]
  10. L. A. Riggs and Ü. Tulunay, “Visual Effects of Varying the Extent of Compensation for Eye Movements,” J. Opt. Soc. Am. 49, 741–745 (1959).
    [CrossRef] [PubMed]
  11. L. A. Riggs and A. M. L. Schick, “Accuracy of Retinal Image Stabilization Achieved With a Plane Mirror on a Tightly Fitting Contact Lens,” Vision Res. 8, 159–169 (1968).
    [CrossRef] [PubMed]
  12. R. M. Jones and Ü. Tulunay-Keesey, “Accuracy of Image Stabilization by an Optical Electronic Feedback System,” Vision Res. 15, 57–61 (1975).
    [CrossRef] [PubMed]
  13. A. Fiorentini and M. T. Zoli, “Detection of a Target Superimposed to a Step Pattern of Illumination,” Atti Fond. Giorgio Ronchi 21, 338–356 (1966).
  14. A. Vassilev, “Contrast Sensitivity Near Borders: Significance of Test Stimulus Form, Size, and Duration,” Vision Res. 13, 719–730 (1973).
    [CrossRef] [PubMed]
  15. L. A. Riggs, J. C. Armington, and F. Ratliff, “Motion of the Retinal Image During Fixation,” J. Opt. Soc. Am. 44, 315–321 (1954).
    [CrossRef] [PubMed]
  16. Ü. Tulunay-Keesey and A. Vassilev, “Foveal Spatial Sensitization With Stabilized Vision,” Vision Res. 14, 101–105 (1974).
    [CrossRef] [PubMed]
  17. G. Westheimer, “Spatial Interaction in Human Cone Vision,” J. Physiol. London,  190, 139–154 (1967).
  18. A. Fiorentini, M. Jeanne, G. Toraldo, and De Francia, “Measurements of Differential Threshold in the Presence of Spatial Illumination Gradient,” Atti Fond. Giorgio Ronchi 10, 371–379 (1955).
  19. D. A. Burkhardt, “Brightness and the Increment Threshold,” J. Opt. Soc. Am. 56, 979–981 (1966).
    [CrossRef] [PubMed]
  20. G. Von Békésy, “Brightness Distribution Across Mach Bands Measured With Flicker Photometry, and the Linearity of Sensory Nervous Interaction,” J. Opt. Soc. Am. 58, 1–8 (1968).
    [CrossRef]
  21. F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, San Francisco, 1965).
  22. E. Mach, “Uber die Wirkung der raumlichen Vertheilung des Lichtreizes auf die Netzhaut,” Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 2A 52, 303–322 (1865). [Translated in F. Ratliff, Mach Bands (Holden-Day, San Francisco, 1965).
  23. L. A. Riggs, F. Ratliff, and Ü. T. Keesey, “Appearance of Mach Bands With a Motionless Retinal Image,” J. Opt. Soc. Am. 51, 702–703 (1961).
    [CrossRef] [PubMed]
  24. J. P. Thomas, “Threshold Measurements of Mach Bands,” J. Opt. Soc. Am. 55, 521–524 (1965).
    [CrossRef]
  25. A. Remole, “Brightness Enhancement Versus Darkness Enhancement at a Border,” Vision Res. 17, 1095–1100 (1977).
    [CrossRef] [PubMed]

1977 (2)

Ü. Tulunay-Keesey and R. M. Jones, “Spatial Sensitization as a Function of Delay,” Vision Res. 17, 1191–1199 (1977).
[CrossRef] [PubMed]

A. Remole, “Brightness Enhancement Versus Darkness Enhancement at a Border,” Vision Res. 17, 1095–1100 (1977).
[CrossRef] [PubMed]

1975 (1)

R. M. Jones and Ü. Tulunay-Keesey, “Accuracy of Image Stabilization by an Optical Electronic Feedback System,” Vision Res. 15, 57–61 (1975).
[CrossRef] [PubMed]

1974 (1)

Ü. Tulunay-Keesey and A. Vassilev, “Foveal Spatial Sensitization With Stabilized Vision,” Vision Res. 14, 101–105 (1974).
[CrossRef] [PubMed]

1973 (2)

A. Vassilev, “Contrast Sensitivity Near Borders: Significance of Test Stimulus Form, Size, and Duration,” Vision Res. 13, 719–730 (1973).
[CrossRef] [PubMed]

S. Petry, D. C. Hood, and F. Goodkin, “Time course of lateral inhibition in the human visual system,” J. Opt. Soc. Am. 63, 385–386 (1973).
[CrossRef] [PubMed]

1969 (2)

1968 (2)

L. A. Riggs and A. M. L. Schick, “Accuracy of Retinal Image Stabilization Achieved With a Plane Mirror on a Tightly Fitting Contact Lens,” Vision Res. 8, 159–169 (1968).
[CrossRef] [PubMed]

G. Von Békésy, “Brightness Distribution Across Mach Bands Measured With Flicker Photometry, and the Linearity of Sensory Nervous Interaction,” J. Opt. Soc. Am. 58, 1–8 (1968).
[CrossRef]

1967 (1)

G. Westheimer, “Spatial Interaction in Human Cone Vision,” J. Physiol. London,  190, 139–154 (1967).

1966 (3)

1965 (1)

1963 (2)

H. D. Baker, “Initial Stages of Dark and Light Adaptation,” J. Opt. Soc. Am. 53, 98–103 (1963).
[CrossRef] [PubMed]

S. Novak and G. Sperling, “Visual Threshold Near a Continuously Visible or a Briefly Presented Light-Dark Boundary,” Opt. Acta 10, 187–191(1963).
[CrossRef]

1961 (1)

1959 (1)

1955 (1)

A. Fiorentini, M. Jeanne, G. Toraldo, and De Francia, “Measurements of Differential Threshold in the Presence of Spatial Illumination Gradient,” Atti Fond. Giorgio Ronchi 10, 371–379 (1955).

1954 (1)

1948 (1)

B. H. Crawford, “Visual Adaptation in Relation to Brief Conditioning Stimuli,” Proc. Soc. London, Ser. B 134, 283–302 (1948).
[CrossRef]

1865 (1)

E. Mach, “Uber die Wirkung der raumlichen Vertheilung des Lichtreizes auf die Netzhaut,” Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 2A 52, 303–322 (1865). [Translated in F. Ratliff, Mach Bands (Holden-Day, San Francisco, 1965).

Armington, J. C.

Baker, H. D.

Burkhardt, D. A.

Crawford, B. H.

B. H. Crawford, “Visual Adaptation in Relation to Brief Conditioning Stimuli,” Proc. Soc. London, Ser. B 134, 283–302 (1948).
[CrossRef]

Fiorentini, A.

A. Fiorentini and M. T. Zoli, “Detection of a Target Superimposed to a Step Pattern of Illumination,” Atti Fond. Giorgio Ronchi 21, 338–356 (1966).

A. Fiorentini, M. Jeanne, G. Toraldo, and De Francia, “Measurements of Differential Threshold in the Presence of Spatial Illumination Gradient,” Atti Fond. Giorgio Ronchi 10, 371–379 (1955).

Francia, De

A. Fiorentini, M. Jeanne, G. Toraldo, and De Francia, “Measurements of Differential Threshold in the Presence of Spatial Illumination Gradient,” Atti Fond. Giorgio Ronchi 10, 371–379 (1955).

Goodkin, F.

Hood, D. C.

Jeanne, M.

A. Fiorentini, M. Jeanne, G. Toraldo, and De Francia, “Measurements of Differential Threshold in the Presence of Spatial Illumination Gradient,” Atti Fond. Giorgio Ronchi 10, 371–379 (1955).

Jones, R. M.

Ü. Tulunay-Keesey and R. M. Jones, “Spatial Sensitization as a Function of Delay,” Vision Res. 17, 1191–1199 (1977).
[CrossRef] [PubMed]

R. M. Jones and Ü. Tulunay-Keesey, “Accuracy of Image Stabilization by an Optical Electronic Feedback System,” Vision Res. 15, 57–61 (1975).
[CrossRef] [PubMed]

Keesey, Ü. T.

Kelly, D. H.

Mach, E.

E. Mach, “Uber die Wirkung der raumlichen Vertheilung des Lichtreizes auf die Netzhaut,” Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 2A 52, 303–322 (1865). [Translated in F. Ratliff, Mach Bands (Holden-Day, San Francisco, 1965).

Matthews, M. L.

Novak, S.

S. Novak and G. Sperling, “Visual Threshold Near a Continuously Visible or a Briefly Presented Light-Dark Boundary,” Opt. Acta 10, 187–191(1963).
[CrossRef]

Petry, S.

Ratliff, F.

Remole, A.

A. Remole, “Brightness Enhancement Versus Darkness Enhancement at a Border,” Vision Res. 17, 1095–1100 (1977).
[CrossRef] [PubMed]

Riggs, L. A.

Schick, A. M. L.

L. A. Riggs and A. M. L. Schick, “Accuracy of Retinal Image Stabilization Achieved With a Plane Mirror on a Tightly Fitting Contact Lens,” Vision Res. 8, 159–169 (1968).
[CrossRef] [PubMed]

Sperling, G.

S. Novak and G. Sperling, “Visual Threshold Near a Continuously Visible or a Briefly Presented Light-Dark Boundary,” Opt. Acta 10, 187–191(1963).
[CrossRef]

Teller, D. Y.

D. Y. Teller, “The Influence of Borders on Increment Thresholds,” Ph.D. dissertation, University of California, Berkeley, 1965 (unpublished).

Thomas, J. P.

Toraldo, G.

A. Fiorentini, M. Jeanne, G. Toraldo, and De Francia, “Measurements of Differential Threshold in the Presence of Spatial Illumination Gradient,” Atti Fond. Giorgio Ronchi 10, 371–379 (1955).

Tulunay, Ü.

Tulunay-Keesey, Ü.

Ü. Tulunay-Keesey and R. M. Jones, “Spatial Sensitization as a Function of Delay,” Vision Res. 17, 1191–1199 (1977).
[CrossRef] [PubMed]

R. M. Jones and Ü. Tulunay-Keesey, “Accuracy of Image Stabilization by an Optical Electronic Feedback System,” Vision Res. 15, 57–61 (1975).
[CrossRef] [PubMed]

Ü. Tulunay-Keesey and A. Vassilev, “Foveal Spatial Sensitization With Stabilized Vision,” Vision Res. 14, 101–105 (1974).
[CrossRef] [PubMed]

Ü. Tulunay-Keesey, “Visibility of a Stabilized Target as a Function of Frequency and Amplitude of Luminance Variation,” J. Opt. Soc. Am. 59, 604–610 (1969).
[CrossRef]

Vassilev, A.

Ü. Tulunay-Keesey and A. Vassilev, “Foveal Spatial Sensitization With Stabilized Vision,” Vision Res. 14, 101–105 (1974).
[CrossRef] [PubMed]

A. Vassilev, “Contrast Sensitivity Near Borders: Significance of Test Stimulus Form, Size, and Duration,” Vision Res. 13, 719–730 (1973).
[CrossRef] [PubMed]

Von Békésy, G.

Westheimer, G.

G. Westheimer, “Spatial Interaction in Human Cone Vision,” J. Physiol. London,  190, 139–154 (1967).

Zoli, M. T.

A. Fiorentini and M. T. Zoli, “Detection of a Target Superimposed to a Step Pattern of Illumination,” Atti Fond. Giorgio Ronchi 21, 338–356 (1966).

Atti Fond. Giorgio Ronchi (2)

A. Fiorentini and M. T. Zoli, “Detection of a Target Superimposed to a Step Pattern of Illumination,” Atti Fond. Giorgio Ronchi 21, 338–356 (1966).

A. Fiorentini, M. Jeanne, G. Toraldo, and De Francia, “Measurements of Differential Threshold in the Presence of Spatial Illumination Gradient,” Atti Fond. Giorgio Ronchi 10, 371–379 (1955).

J. Opt. Soc. Am. (11)

D. A. Burkhardt, “Brightness and the Increment Threshold,” J. Opt. Soc. Am. 56, 979–981 (1966).
[CrossRef] [PubMed]

G. Von Békésy, “Brightness Distribution Across Mach Bands Measured With Flicker Photometry, and the Linearity of Sensory Nervous Interaction,” J. Opt. Soc. Am. 58, 1–8 (1968).
[CrossRef]

L. A. Riggs and Ü. Tulunay, “Visual Effects of Varying the Extent of Compensation for Eye Movements,” J. Opt. Soc. Am. 49, 741–745 (1959).
[CrossRef] [PubMed]

H. D. Baker, “Initial Stages of Dark and Light Adaptation,” J. Opt. Soc. Am. 53, 98–103 (1963).
[CrossRef] [PubMed]

M. L. Matthews, “Appearance of Mach Bands for Short Durations and at Sharply Focussed Contours,” J. Opt. Soc. Am. 56, 1401–1402 (1966).
[CrossRef]

D. H. Kelly, “Flickering Patterns and Lateral Inhibition,” J. Opt. Soc. Am. 59, 1361–1370 (1969).
[CrossRef]

S. Petry, D. C. Hood, and F. Goodkin, “Time course of lateral inhibition in the human visual system,” J. Opt. Soc. Am. 63, 385–386 (1973).
[CrossRef] [PubMed]

Ü. Tulunay-Keesey, “Visibility of a Stabilized Target as a Function of Frequency and Amplitude of Luminance Variation,” J. Opt. Soc. Am. 59, 604–610 (1969).
[CrossRef]

L. A. Riggs, J. C. Armington, and F. Ratliff, “Motion of the Retinal Image During Fixation,” J. Opt. Soc. Am. 44, 315–321 (1954).
[CrossRef] [PubMed]

L. A. Riggs, F. Ratliff, and Ü. T. Keesey, “Appearance of Mach Bands With a Motionless Retinal Image,” J. Opt. Soc. Am. 51, 702–703 (1961).
[CrossRef] [PubMed]

J. P. Thomas, “Threshold Measurements of Mach Bands,” J. Opt. Soc. Am. 55, 521–524 (1965).
[CrossRef]

J. Physiol. London (1)

G. Westheimer, “Spatial Interaction in Human Cone Vision,” J. Physiol. London,  190, 139–154 (1967).

Opt. Acta (1)

S. Novak and G. Sperling, “Visual Threshold Near a Continuously Visible or a Briefly Presented Light-Dark Boundary,” Opt. Acta 10, 187–191(1963).
[CrossRef]

Proc. Soc. London, Ser. B (1)

B. H. Crawford, “Visual Adaptation in Relation to Brief Conditioning Stimuli,” Proc. Soc. London, Ser. B 134, 283–302 (1948).
[CrossRef]

Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 2A (1)

E. Mach, “Uber die Wirkung der raumlichen Vertheilung des Lichtreizes auf die Netzhaut,” Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 2A 52, 303–322 (1865). [Translated in F. Ratliff, Mach Bands (Holden-Day, San Francisco, 1965).

Vision Res. (6)

Ü. Tulunay-Keesey and A. Vassilev, “Foveal Spatial Sensitization With Stabilized Vision,” Vision Res. 14, 101–105 (1974).
[CrossRef] [PubMed]

A. Remole, “Brightness Enhancement Versus Darkness Enhancement at a Border,” Vision Res. 17, 1095–1100 (1977).
[CrossRef] [PubMed]

Ü. Tulunay-Keesey and R. M. Jones, “Spatial Sensitization as a Function of Delay,” Vision Res. 17, 1191–1199 (1977).
[CrossRef] [PubMed]

L. A. Riggs and A. M. L. Schick, “Accuracy of Retinal Image Stabilization Achieved With a Plane Mirror on a Tightly Fitting Contact Lens,” Vision Res. 8, 159–169 (1968).
[CrossRef] [PubMed]

R. M. Jones and Ü. Tulunay-Keesey, “Accuracy of Image Stabilization by an Optical Electronic Feedback System,” Vision Res. 15, 57–61 (1975).
[CrossRef] [PubMed]

A. Vassilev, “Contrast Sensitivity Near Borders: Significance of Test Stimulus Form, Size, and Duration,” Vision Res. 13, 719–730 (1973).
[CrossRef] [PubMed]

Other (2)

F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, San Francisco, 1965).

D. Y. Teller, “The Influence of Borders on Increment Thresholds,” Ph.D. dissertation, University of California, Berkeley, 1965 (unpublished).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

FIG. 1
FIG. 1

(a) Optical configuration for presentation of stabilized images. (b) Viewing field containing the edge and test stimulus.

FIG. 2
FIG. 2

Stimulus threshold versus distance from an edge having a 1:20 luminance ratio. The background edge is continuously presented. The stimulus consists of a line 1 wide by 30 long; it was presented for 100 ms once each second. Results for both stabilized (dots) and unstabilized (crosses) viewing are given. (a) Subject BJB, (b) subject FXL. The smooth curves drawn through the data points are fitted by eye.

FIG. 3
FIG. 3

Stimulus threshold versus distance from an edge for the same condition as Fig. 2 but with the stimulus presented for 10 ms. (a) Subject BJB, (b) subject FXL.

FIG. 4
FIG. 4

Stimulus threshold versus distance from an edge for the same conditions as given in Fig. 2 except that both the background edge and test stimulus are presented together for 50 ms. (a) Subject BJB, (b) subject FXL.

FIG. 5
FIG. 5

Approximate representation of the brightness distribution across the sharp edge for a luminance ratio of 1:20 for unstabilized viewing.