Abstract

On the basis of measured receptive field profiles and spatial frequency tuning characteristics of simple cortical cells, it can be concluded that the representation of an image in the visual cortex must involve both spatial and spatial frequency variables. In a scheme due to Gabor, an image is represented in terms of localized symmetrical and antisymmetrical elementary signals. Both measured receptive fields and measured spatial frequency tuning curves conform closely to the functional form of Gabor elementary signals. It is argued that the visual cortex representation corresponds closely to the Gabor scheme owing to its advantages in treating the subsequent problem of pattern recognition.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription